Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (8): 1093-1106.doi: 10.11764/j.issn.1672-1926.2021.07.018

    Next Articles

Geochemical characteristics and resource potential of shale gas in Sichuan Basin

Jian LI1,2(),Xiaobo WANG1,2(),Lianhua HOU1,2,Chang CHEN3,Jianying GUO1,2,Chunlong YANG1,2,Yifeng WANG1,2,Zhisheng LI1,2,Huiying CUI1,2,Aisheng HAO1,2,Lu ZHANG1,2   

  1. 1.Research Institute of Petroleum Exploration & Development of PetroChina,Beijing 100083,China
    2.Key Laboratory of Gas Reservoir Formation and Development of CNPC,Langfang 065007,China
    3.Shunan Gas?Mine Field of Southwest Oil & Gas Field Branch Company of PetroChina,Luzhou 646001,China
  • Received:2021-07-02 Revised:2021-07-26 Online:2021-08-10 Published:2021-08-25
  • Contact: Xiaobo WANG E-mail:lijian69@petrochina.com.cn;wangxb69@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05007-003);the Class A Strategic Leading Science and Technology Project of the Chinese Academy of Sciences(XDA14010403);the China National Petroleum Corporation Fund Project(2018D-500802);the China National Petroleum Corporation Science and Technology Project(2019B-0604)

Abstract:

Shale gas is a green, low-carbon and clean unconventional natural gas energy. China is rich in shale gas resources. Accelerating shale gas exploration and development is of great practical significance to improve China's energy structure and achieve the goal of “2030 carbon peak neutralization and 2060 carbon neutralization”. The Ordovician Wufeng Formation to Silurian Longmaxi Formation in Sichuan Basin is the key strata for shale gas exploration and development in China. Based on the experimental analysis of shale gas in Wufeng Formation to Longmaxi Formation in Weiyuan, Changning, Zhaotong, Fuling and Weirong areas of Sichuan Basin, this paper systematically analyzes the geochemical characteristics of shale gas in Wufeng Formation to Longmaxi Formation, discusses the genesis of shale gas, the causes of hydrocarbon isotope inversion and the source of shale gas, and looks forward to the exploration prospects of shale gas resources in the basin. It has important guiding significances for shale gas exploration and development in Sichuan Basin and even in China. The results show that: (1) The shale gas from Wufeng Formation to Longmaxi Formation is a typical dry gas, and the hydrocarbon isotopes are distributed in negative sequence. The carbon isotopes of alkane gas in Changning, Zhaotong and Fuling areas are heavier and have a higher degree of thermal evolution than those in Weiyuan and Weirong areas, and the rare gas is of crustal origin. (2) Shale gas from Wufeng Formation to Longmaxi Formation is a thermogenic oil type gas at high-over mature stage, which is mainly the mixture of crude oil cracking gas and kerogen cracking gas. The hydrocarbon isotope inversion of alkane gas is mainly caused by the mixing of crude oil cracking gas and kerogen cracking gas at high-over mature stage, the exchange between formation water and methane at high evolution stage and so on. (3) The carbon isotopic values of methane in shale gas from Wufeng Formation to Longmaxi Formation match the carbon isotopic values of kerogen in mudstone of Longmaxi Formation of Lower Silurian, which conforms to the law of carbon isotopic fractionation δ13Ckerogen13Coil13Calkane gas. (4) The total amount of marine, marine continental transitional and continental facies shale gas resources in Sichuan Basin is about 41.5×1012 m3, with broad exploration prospects in resource potential.

Key words: Sichuan Basin, Shale gas, Wufeng Formation to Longmaxi Formation, Geochemical characteristics, Genesis and origination, Marine, marine continental transitional and continental facies, Resource potential

CLC Number: 

  • TE122.1+13

Fig. 1

Distribution of shale gas fields in Wufeng Formation to Longmaxi Formation and comprehensive histogram of main shales in Sichuan Basin and its periphery(modified from to Refs.[13,34])"

Table 1

Composition and isotope data of some shale gas samples from shale gas fields of Wufeng Formation to Longmaxi Formation in Sichuan Basin"

气田井号组分含量/%

湿度系数

(C2-5/C1-5) /%

碳同位素值δ13C/‰

(VPDB)

氢同位素值δD/‰

(VSMOW)

C1C2C3HeH2N2CO2H2S甲烷乙烷丙烷甲烷乙烷

威远

页岩

气田

威204-H3897.330.700.030.025 00.000.441.120.350.74-36.0-40.6-41.5-145-155
威204H35-897.370.690.030.024 10.030.540.800.530.73-36.2-41.4-41.5-146-156
威204H5197.840.660.030.024 60.000.490.960.000.70-36.7-41.1-41.2-147-155
威204H4297.820.610.020.024 70.000.590.930.000.64-36.9-41.2-40.5-147-155
威204H4097.760.540.020.023 90.010.491.160.000.57-36.8-40.7-41.6-148-149

长宁

页岩

气田

宁209-H16-398.310.450.010.020 00.000.290.220.690.47-27.7-33.0-35.4-148-154
宁209-H2997.690.320.000.022 10.000.450.521.000.33-27.4-32.4-34.1-149-153
宁209-H1397.730.370.000.019 90.010.510.490.880.38-27.7-32.9-35.0-147-156
宁209-H697.870.350.000.020 50.010.330.650.770.36-27.2-33.1-34.6-148-149
宁209-H1198.270.400.010.021 40.000.330.510.450.42-27.3-32.6-34.8-148-152

昭通

页岩

气田

YS118H398.260.550.010.041 40.000.630.240.260.57-26.3-32.2-32.7-149-170
YS118H498.590.550.000.036 20.000.630.190.000.56-27.3-32.3-32.8-149-169
阳108H198.450.500.000.037 80.000.550.000.460.51-27.7-32.6-33.0-148-167
阳105H198.470.570.000.030 60.020.500.000.410.57-29.6-34.1-34.4-148-168
YS136H1-198.210.620.010.026 00.000.380.190.570.64-28.4-33.9-34.8-148-170

涪陵

页岩

气田

焦页61-2HF97.540.430.000.044 50.010.870.540.560.44-31.2-35.9-37.7-151-161
焦页56-2HF98.030.500.000.036 40.010.880.540.000.51-31.2-36.2-38.1-152-169
焦页37-6HF97.960.460.010.039 60.000.960.570.000.47-31.5-36.1-38.3-150-160
焦页4-2HF98.090.540.010.035 70.000.910.420.000.56-30.8-35.9-37.8-149-172
焦页39-7HF98.210.590.020.038 50.000.800.350.000.61-31.3-36.2-39.0-150-167

威荣

页岩

气田

威页23-4HF96.730.420.010.021 10.010.601.590.620.45-36.5-38.0-40.7-149-133
威页23-2HF96.450.400.010.020 10.000.721.660.730.43-36.4-38.1-41.2-148-133
威页23-6HF96.400.410.010.020 50.000.671.680.800.44-36.6-38.1-41.4-147-138
威页43-2HF96.810.460.020.021 10.000.441.490.740.50-36.3-38.4-39.6-147-136
威页43-3HF96.640.460.030.021 40.050.551.480.780.51-36.5-37.7-38.1-148-132

Fig.2

Relationship between humidity coefficient (C2-5/C1-5) and δ13C2 on shale gas of Wufeng Formation to Longmaxi Formation in Sichuan Basin"

Fig.3

Carbon isotopic composition sequences of shale gas from Wufeng Formation to Longmaxi Formation in Sichuan Basin"

Fig.4

Relationship between δ13C1 and δ13C2 on shale gas of Wufeng Formation to Longmaxi Formation in Sichuan Basin"

Fig.5

Relationship between δ13C1 and δD1 on shale gas of Wufeng Formation to Longmaxi Formation in Sichuan Basin and Yanchang Formation in Ordos Basin"

Fig.6

Relationship between 3He/4He and 40Ar/36Aron shale gas of Wufeng Formation to Longmaxi Formation in Sichuan Basin"

Fig.7

Genetic identification of carbon isotope of methane, ethane and propane in shale gas from Wufeng Formation to Longmaxi Formation in Sichuan Basin (chart according to Ref.[43])"

Fig.8

Genetic identification of ln(C1/C2) and ln(C1/C3) of crude oil-cracking gas and kerogen-cracking gas for shale gas from Wufeng Formation to Longmaxi Formation in Sichuan Basin (chart according to Ref.[64])"

Table 2

Data of marine, marine continental transitional and continental facies shale gas resource potential in Sichuan Basin (some basic datas are according to Refs.[20,25,34,69-79])"

类型层位岩性分布面积 /(104 km2页岩厚度 /m

有机碳含量

/%

有机质 类型RO/%含气量 /(m3/t)资源量 /(1012 m3
海相奥陶系五峰组—志留系龙马溪组黑色页岩1820~3000.4~9.6腐泥型(2.3~3.8)/2.8(1.28~6.47)/3.271023.841.5
寒武系筇竹寺组黑色页岩1540~3500.6~12.9腐泥型(2.2~5.0)/3.5(0.3~6.0)/1.910.2
震旦系灯影组黑色页岩1010~30(0.50~14.17)/ 2.91腐泥型(2.1~5.7)/3.51.18~4.823.6
海陆 过渡相二叠系龙潭组煤系泥岩1820~170(0.5~7.1)/2.9腐泥—腐殖型及腐殖型(1.7~3.2)/2.32.5~3.88.7
陆相三叠系须家河组黑色 泥岩

须五段4

须三段4.5

须一段6.4

须五段50~300

须三段20~100

须一段10~200

(0.5~9.9)/1.8腐殖型(1.0~2.5)/1.41.37(川西)1.28(川东北—川中)5.69
侏罗系自流井组

暗色

泥页岩

940~180(0.1~5)/0.9腐泥型、腐殖—腐泥型0.7~1.61.35~1.663.4
1 邹才能, 陶士振, 侯连华. 非常规油气地质[M]. 第二版. 北京:地质出版社, 2013.
ZOU C N, TAO S Z,HOU L H. Unconventional Petroleum Geology[M]. Second Edition. Beijing: Geological Publishing House, 2013.
2 EIA. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States[R]. Washington D C: U. S. Energy Information Administration, 2013.
3 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京:科学出版社,2016.
Strategic Research Center of Oil and Gas Resources, Ministry of Land and Resources. Investigation and Evaluation and Selection of Favorable Areas of the Potential of Shale Gas Resources in China[M]. Beijing: Science Press, 2016.
4 董大忠, 王玉满, 李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016, 36(1): 19-32.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
5 郑民,李建忠,吴晓智,等. 我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学, 2018,29(10):1383-1397.
ZHENG M,LI J Z,WU X Z,et al. China’s conventional and unconventional natural gas resource potential, key exploration fields and direction[J]. Natural Gas Geoscience,2018,29(10):1383-1397.
6 DANIEL M J, RONALD J H, TIM E R, et al. Unconventional shale gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
7 SCOTT L M, DANIEL M J, KENT A B, et al. Mississippian Barnett shale, Fort Worth Basin, north-central Texas: Gas-shale play with multitrillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
8 DANIEL M J, RONALD J H, TIM E R, et al. Unconventional shale gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
9 GAULT B, STOTTS G. Improve shale gas production forecasts[J]. E & P,2007, 80(3): 85-87.
10 MARTINEAU D F. History of the Newark East Field and the Barnett shale as a gas reservoir[J]. AAPG Bulletin, 2007, 91(4): 399-403.
11 U.S.Energy Information Administration.Natural gas:Data: shale gas Production[EB/OL].[2021-7-11].http://www.eia.gov/dnav/ng/ng_prod_shalegas_s1_a.htm.
12 孙赞东,贾承造,李相方,等. 非常规油气勘探与开发(上、下册)[M]. 北京:石油工业出版社,2011.
SUN Z D,JIA C Z,LI X F,et al. Unconventional Oil & Gas Exploration and Development:Volume I,II[M]. Beijing:Petroleum Industry Press,2011.
13 戴金星,董大忠,倪云燕,等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学,2020,31(6):745-760.
DAI J X,DONG D Z,NI Y Y,et al. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience,2020,31(6):745-760.
14 李新景,胡素云,程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发,2007,34(4):392-400.
LI X J, HU S Y, CHENG K M. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007,34(4):392-400.
15 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140.
ZHANG J C, XU B, NIE H K, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6):136-140.
16 董大忠, 程克明, 王世谦, 等. 页岩气资源评价方法及其在四川盆地的应用[J]. 天然气工业, 2009, 29(5): 33-39.
DONG D Z, CHENG K M, WANG S Q, et al. An evaluation method of shale gas resource and its application in the Sichuan Basin[J]. Natural Gas Industry, 2009, 29(5): 33-39.
17 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU C N,DONG D Z,WANG S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development, 2010,37(6): 641-653.
18 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2): 129-136.
19 高波. 四川盆地龙马溪组页岩气地球化学特征及其地质意义[J]. 天然气地球科学,2015,26 (6): 1173-1182.
GAO B. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience,2015,26(6):1173-1182. .
20 董大忠, 高世葵, 黄金亮,等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12):1-15.
DONG D Z,GAO S K,HUANG J L,et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15.
21 曹春辉,张铭杰,汤庆艳,等. 四川盆地志留系龙马溪组页岩气气体地球化学特征及意义[J]. 天然气地球科学,2015,26(8):1604-1612.
CAO C H, ZHANG M J, TANG Q Y,et al. Geochemical characteristics and implications of shale gas in Longmaxi Formation,Sichuan Basin,China[J]. Natural Gas Geoscience,2015,26(8):1604-1612.
22 邹才能, 董大忠, 王玉满 , 等. 中国页岩气特征、挑战及前景(一) [J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU C N,DONG D Z,WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(I) [J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
23 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景( 二) [J]. 石油勘探与开发, 2016,43(2): 166-178.
ZOU C N,DONG D Z,WANG Y M, et al. Shale gas in China: Characteristics,challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
24 董大忠,邹才能,戴金星,等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016,27(3):397-406.
DONG D Z, ZOU C N, DAI J X,et al. Suggestions on the development stratergy of shale gas in China[J]. Natural Gas Geoscience,2016,27(3):397-406.
25 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169.
MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development,2018,45(1):161-169.
26 谢军. 长宁—威远国家级页岩气示范区建设实践与成效[J]. 天然气工业, 2018, 38(2): 1-7.
XIE J. Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J]. Natural Gas Industry, 2018, 38(2): 1-7.
27 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6.
WANG Z G. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015,36(1): 1-6.
28 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
29 郭旭升. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO X S. Rules of two-factor enrichment for marine shale gas in southern China-Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
30 王哲,李贤庆,张吉振,等. 四川盆地不同区块龙马溪组页岩气地球化学特征对比[J]. 中国煤炭地质,2016,28(2):22-27.
WANG Z, LI X Q,ZHANF J Z, et al. Longmaxi Formation shale gas geochemical features comparison between different blocks in Sichuan Basin[J]. Coal Geology of China,2016,28(2):22-27.
31 魏祥峰,郭彤楼,刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学,2016,27(3):539-548.
WEI X F,GUO T L,LIU R B. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling shale gasfield,Chongqing[J]. Natural Gas Geoscience,2016,27(3):539-548.
32 金之钧, 胡宗全, 高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10.
JIN Z J,HU Z Q,GAO B,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
33 邹才能, 赵群, 董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12):1781-1796.
ZOU C N,ZHAO Q,DONG D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
34 邹才能, 杨智, 孙莎莎,等. “进源找油”: 论四川盆地页岩油气[J]. 中国科学: 地球科学, 2020,50(7): 903-920.
ZOU C N, YANG Z, SUN S S, et al. “Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin[J]. Science China Earth Sciences, 2020,50(7): 903-920.
35 谢军,张浩淼,佘朝毅,等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探,2017,22(1):21-28.
XIE J,ZHANG H M, YU C Y, et al, et al. Practice of geology-engineering integration in Changning state shale gas demonstration area[J]. Chinese Petroleum Exploration, 2017, 22(1): 21-28.
36 赵文智,贾爱林,位云生,等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探,2020,25(1):31-44.
ZHAO W Z, JIA A L,WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1): 31-44.
37 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.
JIN Z J,BAI Z R, GAO B, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019,40(3): 451-458.
38 邱振,邹才能,王红岩,等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学,2020,31(2):163-175.
QIU Z, ZOU C N,WANG H Y, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
39 马永生. 四川盆地普光超大型气田的形成机制[J]. 石油学报, 2007,28(2):9-14,21.
MA Y S. Generation mechanism of Puguang Gas Field in Si-chuan Basin[J]. Acta Petrolei Sinica,2007,28(2): 9-14,21.
40 DAI J X, XIA X Y, LI Z S, et al. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques[J]. Chemical Geology,2012,310-311: 49-55.
41 ZUMBERGE J E,FERWORN K A,BROWN S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology,2012,31(1):43-52.
42 ZUMBERGE J E,FERWORN K A,CURTIS J B. Gas character anomalies found in highly productive shale gas wells[J]. Geochimica et Cosmochimica Acta,2009,73(13):A1539.
43 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,1993,4(2-3):1-40.
DAI J X. Characteristics of carbon and hydrogen isotopes in natural gas and discrimination of all kinds of natural gas[J]. Natural Gas Geoscience,1993,4(2-3):1-40.
44 徐红卫,李贤庆,周宝刚,等. 延长探区延长组陆相页岩气地球化学特征和成因[J]. 矿业科学学报,2017,2(2):99-108.
XU H W,LI X Q,ZHOU B G,et al. Geochemical characteristics and genesis of the Yanchang Formation terrestrial shale gas in the Yanchang exploration area[J]. Journal of Mining Science and Technology,2017,2(2):99-108.
45 戴金星,邹才能,张水昌,等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学:D辑,2008,38(11):1329-1341.
DAI J X, ZOU C N, ZHANG S C,et a1. Identication of inorganic origin and biogenie hydrocarbon gas[J]. Science in China:Series D,2008,38(11):1329-1341.
46 沈平,申歧祥,王先彬,等.气态烃同位素组成特征及煤型气判识[J].中国科学:B辑,1987,17(6):647-656.
SHEN P,SHEN Q X,WANG X B,et al. Characteristics of the isotope composition of gas from hydrocarbon and identification of coal-type gas[J]. Science in China: Series B,1987,17(6):647-656.
47 刘全有,戴金星,李剑,等. 塔里木盆地天然气氢同位素地球化学与对热成熟度和沉积环境的指示意义[J].中国科学:D辑,2007,37(12):1599-1608.
LIU Q Y,DAI J X,LI J,et al. Hydrogen isotope composition of natural gas from the Tarim Basin and its indication of depositional environments of the source rocks[J]. Science in China: Series D,2007,37(12):1599-1608.
48 SCHOELL M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta,1980,44(5): 649-661.
49 SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin,1983,67 (12):2225-2238.
50 王晓锋,刘文汇,徐永昌,等. 不同成因天然气的氢同位素组成特征研究进展[J]. 天然气地球科学,2006,17(2):163-169.
WANG X F,LIU W H, XU Y C,et al. The hydrogen isotopic composition of natural gases generated from different pathway[J]. Natural Gas Geoscience,2006,17(2):163-169.
51 BURRUSS R C,LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry,2010,41(12):1285-1296.
52 TILLEY B,MCLELLAN S,HIEBERT S,et al. Gas isotopic reversals in fractured gas reservoirs of the western Canadian Foothills:Mature shale gases in disguise[J]. AAPG Bulletin,2011,95(8):1399-1422.
53 MAMYRIN B A, ANUFRRIEV G S, KAMENSKII I L, et al. Determination of the isotopic composition of atmospheric helium[J]. Geochemistry International,1970,7(4):465-473.
54 CLARKE W B, JENKINS W J, TOP Z. Determination of tritium by mass spectrometric measurement of 3He[J]. The International Journal of Applied Radiation and Isotopes, 1976, 27(9): 515-522.
55 徐永昌,王先彬,吴仁铭,等. 天然气中稀有气体同位素[J]. 地球化学, 1979, 8(4): 271-282.
XU Y C, WANG X B, WU R M, et al. Rare gas isotopic composition of natural gases[J]. Geochemica, 1979, 8(4): 271-282.
56 OZIMA M, PODESEK F A. Noble Gas Geochemistry[M]. Cambridge: Cambridge University Press, 1983.
57 王晓波, 李志生, 李剑,等. 稀有气体全组分含量及同位素分析技术[J]. 石油学报, 2013, 34(S1): 70-77.
WANG X B, LI Z S, LI J, et al. Techniques for total composition and isotope analyses of noble gases[J]. Acta Perolei Sinica, 2013, 34(S1): 70-77.
58 魏国齐,王东良,王晓波,等. 四川盆地高石梯—磨溪大气田稀有气体特征[J]. 石油勘探与开发, 2014, 41(5): 533-538.
WEI G Q, WANG D L, WANG X B, et al. Characteristics of noble gases in the large Gaoshiti-Moxi Gas Field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(5): 533-538.
59 WANG X B, CHEN J F, LI Z S, et al. Rare gases geochemical characteristics and gas source correlation for Dabei Gas Field in Kuche Depression, Tarim Basin[J]. Energy Exploration & Exploitation, 2016, 34(1): 113-128.
60 WANG X B,WEI G Q, LI J, et al. Geochemical characteristics and origins of noble gases of the Kela 2 Gas Field in the Tarim Basin,China[J].Marine and Petroleum Geology,2018,89: 155-163.
61 WHITICAR M J. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1):291- 314.
62 BEHAR F,KRESSMANN S,RUDKIEWICZ J L,et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry,1992,19(1 /3):173-189.
63 PINZHOFER A,HUE A Y. Genetic and post genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology,1995,126(3/4):281-290.
64 李剑,李志生,王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512.
LI J, LI Z S, WANG X B, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development, 2017, 44(4): 503-512.
65 DAI J X,ZOU C N,LIAO S M,et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas,southern Sichuan Basin[J]. Organic Geochemistry,2014,74:3-12.
66 吴伟,房忱琛,董大忠,等. 页岩气地球化学异常与气源识别[J]. 石油学报,2015,36(11):1332-1340.
WU W,FANG C C,DONG D Z, et a1. Shale gas geochemical anomalies and gas source identification[J]. Acta Petrolei Sinica,2015,36(11):1332-1340.
67 冯子齐,刘丹,黄士鹏,等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发,2016,43(5):705-713.
FENG Z Q,LIU D, HUANG S P, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area,Sichuan Basin[J]. Petroleum Exploration and Development, 2017, 44(4): 503-512.
68 张大伟,李玉喜,张金川,等. 全国页岩气资源潜力调查评价[M]. 北京:地质出版社,2012.
ZHANG D W,LI Y X,ZHANG J C, et al. National Wide Shale Sas Resource Potentional Survey and Assessment [M]. Beijing: Geological Publishing House, 2012.
69 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012,39(1): 69-75.
HUANG J L,ZOU C N,LI J Z,et al. Shale gas formation conditions and resource potential of Lower Cambrian Jianzhusi Formation in southern Sichuan[J]. Petroleum Exploration and Development, 2012,39(1): 69-75.
70 中华人民共和国自然资源部. 中国矿产资源报告[R]. 北京: 地质工业出版社,2019.
Ministry of natural resources of the people's Republic of China. China Mineral Resources Report[R]. Beijing: Geological Industry Press, 2019.
71 翟刚毅,包书景,王玉芳,等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报,2017,38(4):441-447.
ZHAI G Y, BAO S J, WANG Y F,et al. Reservoir forming model of paleouplift margin and major discovery of shale gas in Yichang, Hubei[J]. Acta Geoscientia Sinica, 2017, 38(4): 441-447.
72 杨玉茹,孟凡洋,白名岗,等. 世界最古老页岩气层储层特征与勘探前景分析[J]. 中国地质, 2020,47(1): 14-28.
YANG Y R,MENG F Y,BAI M G, et al. An analysis of reservoir characteristics, resources and exploration prospects of the oldest shale gas in the world[J]. Geology in China, 2020,47(1):14-28.
73 郭旭升, 胡东风, 刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11-18.
GUO X S,HU D F, LIU R B,et al. Geological conditions and exploration potential of Permian sea land transitional facies shale gas in Sichuan Basin[J]. Natural Gas Industry, 2018,38(10): 11-18.
74 段文燊,王同,张南希. 四川盆地二叠系梁山组页岩气勘探新发现[J/OL]. 中国地质:1-2[2021-07-29]. https://kns. cnki. net/kcms/detail/11. 1167. P. 20200807. 1107. 010. html.
DUAN W S,WANG T,ZHANG N X. New discoveries in shale gas exploration of Permian Liangshan Formation in Sichuan Basin[J]. Geology of China:1-2[2021-07-29]. https://kns.cnki.net/kcms/detail/11.1167.P.20200807.1107.010.html.
75 戴金星, 倪云燕, 邹才能,等. 四川盆地须家河组煤系烷烃气碳同位素特征及气源对比意义[J]. 石油与天然气地质, 2009, 30(5): 519-529.
DAI J X,NI Y Y, ZOU C N, et al. Carbon isotope characteristics and gas source correlation significance of coal measure alkane gas in Xujiahe Formation, Sichuan Basin[J]. Oil and Gas Geology, 2009, 30(5): 519-529.
76 郑定业, 庞雄奇, 张可, 等. 四川盆地上三叠系须家河组油气资源评价[J]. 特种油气藏, 2017,24(4): 67-72.
ZHENG D Y,PANG X Q,ZHANG K,et al. Oil and gas resource evaluation of Upper Triassic Xujiahe Formation in Sichuan Basin[J].Special Oil and Gas Reservoirs,2017,24(4):67-72.
77 陈果,刘哿行,李洪玺,等.四川盆地上三叠统须家河组陆相页岩气资源潜力分析[J].天然气技术与经济,2019,13(5):20-28.
CHEN G, LIU G H, LI H X, et al. Analysis of continental shale gas resource potential of Xujiahe Formation of Upper Triassic in Sichuan Basin [J]. Natural Gas Technology and Economy,2019,13(5):20-28.
78 邹才能,杨智,王红岩,等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J]. 地质学报,2019,93(7):1551-1562.
ZOU C N, YANG Z, WANG H Y, et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental gaint shale oil and gas fields in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019,93 (7):1551-1562.
79 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业,2019, 39(6):22-33.
YANG Y M, HUANG D. Oil and gas geological characteristics and new understanding of exploration and development of Jurassic lacustrine shale in Sichuan Basin[J]. Natural Gas Industry, 2019,39(6): 22-33.
[1] Xiaoqi WU,Yingbin CHEN,Yanqing WANG,Huasheng ZENG,Xiaoqiong JIANG,Ye HU. Geochemical characteristics of natural gas in tight sandstone of the Chengdu large gas field, Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1107-1116.
[2] Chunlong YANG,Zengye XIE,Jian LI,Jianying GUO,Lu ZHANG,Hui JIN,Cuiguo HAO,Xiaobo WANG,Zhisheng LI,Jin LI,Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[3] Hailiang LIU,Sibing LIU,Dong ZHOU,Wen LIU,Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[4] Zengye XIE,Chunlong YANG,Jian LI,Lu ZHANG,Jianying GUO,Hui JIN,Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[5] Aisheng HAO,Jian LI,Jianying GUO,Hao WU,Qigui RAN,Zhisheng LI,Xuening QI,Lu ZHANG,Xiaobo WANG. Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan-Hami Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1212-1222.
[6] Shengli XI,Wuling MO,Xinshe LIU,Lei ZHANG,Jian LI,Zhengliang HUANG,Min WANG,Chunlin ZHANG,Qiuying ZHU,Yu YAN,Nengwu ZHOU. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1 [J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
[7] Linghui CAI,Ye YU,Jianhua GUO,Yanran HUANG,Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province [J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
[8] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[9] Fan-hui ZENG, Tao ZHANG, Lei MA, Jian-chun GUO, Bo ZENG. Dynamic permeability model of volume fracturing network in deep shale gas reservoir and its application [J]. Natural Gas Geoscience, 2021, 32(7): 941-949.
[10] Zhuo WEN, Yong-shang KANG, Liu-xu KANG, Jun LI, Qun ZHAO, Hong-yan WANG. Geological evaluation indexes and lowest limit standards for selection of shale gas industrial construction areas: Case study of X block in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(7): 950-960.
[11] Wei YANG, Man-cang LIU, Guo-qi WEI, Hui JIN, Wu-ren XIE, Sai-jun WU, Nan SU, Qiu-ying ZHU, Cui-guo HAO, Xiao-dan WANG. Sedimentary characteristics and sequence lithofacies paleogeography of the semi-closed carbonate platform of the Leikoupo Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 781-793.
[12] Yi LIN, Cong CHEN, Shi-yu XU, Fan YANG, Yi-yang ZENG, Yang LI, Chun-ni ZHAO, Jing YANG, Kai-lai HE. Characteristics and formation mechanism of ultra-deep carbonate reservoirs in the Devonian Guanwushan Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 794-805.
[13] Rong LI, Cheng-peng SU, Guo-shan SHI, Huo-fu JIA, Su-hua LI, Yang YU. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 806-815.
[14] Yu-ling JIANG, Xiao-yu CHEN, Han-yong BAO. A new model for rapid prediction of horizontal well production decline in shale gas staged fracturing: Case study of Fuling shale gas field [J]. Natural Gas Geoscience, 2021, 32(6): 845-850.
[15] Jun-jun CAI, Xian PENG, Qian LI, Tian-hui ZHAN, Zhan-mei ZHU, Wen LI, Xiao-fei GAN, Zhuang DENG, Jia-shu WANG. Subdivision of strongly heterogeneous carbonate gas reservoir and technical countermeasures in different production stages: Case study of Sinian in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 851-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[2] . EVALUATION O N UPPER CARBONIFEROUS HYDROCARBON SOURCE ROCK IN THE NORTHERN MARGIN OF CHAIDAM U BASIN[J]. Natural Gas Geoscience, 2004, 15(2): 125 -127 .
[3] . [J]. Natural Gas Geoscience, 1998, 9(2): 1 -6 .
[4] . THE GEOLOGICAL CHARACTERISTICS OF QIANMIQIAO BURIED[J]. Natural Gas Geoscience, 2003, 14(4): 264 -266 .
[5] HU An-ping,ZHOU Qing-hua. THE LARGEST GAS FIELD IN THE WORLD——NORTH-SOUTH PARS GAS FIELD[J]. Natural Gas Geoscience, 2006, 17(6): 753 -759 .
[6] PING Li-hua, GUO Ying-hai, LI Zhuang-fu, SHEN Yu-lin, ZHANG Chuan-feng. SEDIMENTARY CHARACTERS AND ORIGIN OF QIAOTOU SANDSTONE INTHE TAIYUAN FORMATION, BAODE AREA OF ORDOS BASIN[J]. Natural Gas Geoscience, 2006, 17(6): 797 -801 .
[7] ZHOU Xin-Mao, GAO Xing-Jun, TIAN Chang-Bing, WANG Xin-Ming, CHEN Jian-Yang, HAO Ming-qiang, ZHOU Ying. Quantitative Description of Internal Architecture in Point Bar of Meandering River[J]. Natural Gas Geoscience, 2010, 21(3): 421 -426 .
[8] ZHAO Jing-Zhou. Conception, Classification and Resource Potential of Unconventional Hydrocarbons[J]. Natural Gas Geoscience, 2012, 23(3): 393 -406 .
[9] ZHANG Ming-feng, TUO Jin-cai, ZHANG Xiao-jun, WU Chen-jun, CHEN Ru, GUO Li-jun. Geochemical Characteristics of the Source Rocks from Wunan Lücaotan area in Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(4): 636 -645 .
[10] . [J]. Natural Gas Geoscience, 1991, 2(3): 142 -143,136 .