Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (1): 24-35.doi: 10.11764/j.issn.1672-1926.2021.07.007

Previous Articles     Next Articles

Oil-source correlation and accumulation evolution in Wushi-Wensu area of Tarim Basin

Huifang ZHANG1(),Xiang WANG1,Ke ZHANG1,Chaoqun SHI1,Shan FAN1,Hong LOU1,Xiaoxue WANG1,Gang LI2   

  1. 1.Research Institute of Exploration and Development,PetroChina Tarim Oilfield Company,Korla 841000,China
    2.Resources Survey Office,PetroChina Tarim Oilfield Company,Kolar 841000,China
  • Received:2021-04-24 Revised:2021-06-15 Online:2022-01-10 Published:2022-01-26
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05001-001)

Abstract:

Wushi-Wenshu area has a good exploration prospect. However, there have been disputes in the recognition of oil source and reservoir formation evolution in this area for many years, which restricted the evaluation of the area and the optimization of favorable targets. Through the fine comparison of parameters such as biomarkers and carbon isotopes, it is clear that the oil sand extract and a small part of crude oil in the study area have a good relationship with the source rocks of the Triassic Huangshanjie Formation. Most of the crude oil shows the characteristics of mixed source rocks of Triassic and Jurassic, and the total oil carbon isotopic characteristics show that it is mainly from Triassic. The evaluation of source rocks and comparison of their thermal evolution degree with the maturity of oil and gas shows that the source rocks in the sag are poorly developed and in the low maturity stage, while the oil and gas in this area are all mature, so the source rocks in the sag do not contribute to the generation of oil and gas in this area. The source rocks in Awate area around the sag are well developed and are now in the mature-over-mature evolution stage. The oil and gas in the study area should be transported and accumulated from Awate area. Comprehensive burial history of source rocks, fluid inclusions, single well thermal evolution history and regional structural evolution analysis indicates that early reservoirs of Wucan 1 and Shenmu 1 were formed in Pliocene, in the Late Pliocene, Wucan 1 was transformed into a condensate gas reservoir by a large number of gas filling, while Shenmu 1 remained oil reservoir due to the structural difference. Due to the poor sealing condition, the reservoirs on Wensu Uplift suffered serious biodegradation and formed heavy oil reservoirs.

Key words: Wushi Sag, Wensu Uplift, Oil source correlation, Hydrocarbon accumulation

CLC Number: 

  • TE122.2

Fig.1

Structural division of Wushi-Wensu area in western Kuqa Depression"

Fig.2

Distribution and superposition thickness of Triassic and Jurassic source rocks in Wushi Sag and its periphery"

Table 1

Evaluation parameter of outcrop and drilling source rocks around Wushi Sag"

剖面或井号层位烃源岩 厚度/mTOC/%PG/(mg/g)IH/(mg/g)Tmax/℃实测RO值/%评价
库尔干剖面J2q0------
J1y34(0.77~3.11)/2.05(0.25~2.95)/1.05(19~62)/41(418~443)/4340.54
T3h49(0.40~2.67)/1.90(0.12~1.03)/0.63(25~205)/74(423~449)/4330.58
阿托依纳克剖面J2q/------
J1y44----0.7-
T3h87----0.75-
塔拉克剖面J2q23(0.71~1.56)/1.02(0.36~0.9)/0.59(39~67)/48(442~457)/448-
J1y*86(1.31~9.43)/3.53(0.48~3.17)/1.32(13~165)/53(442~517)/474-中—好
T3h*203(0.49~9.34)/2.52(0.12~4.22)/1.07(10~92)/32(433~533)/470-中—好
小台兰河剖面J2q*72(0.5~3.83)/1.95(0.11~1.88)/0.54(4~65)/21(428~548)/496-中—好
J1y*43(0.60~5.89)/3.06(0.15~1.28v/0.46(6~118)/17(526~586)/5531.5中—好
T3h*123(0.60~5.01)/1.21(0.04~0.28)/0.08(4~100)/10(471~576)/5562.26中—好
阿瓦特河剖面J2q*173(0.87~3.44)/2.0(0.52~2.86)/1.48(17~128)/48(436~485)/4610.8~1.2
J1y*215(0.70~3.07)/1.13(0.06~0.22)/0.14(6~16)/11(536~565)/5521.94
T3h*106(0.7~1.78)/1.06(0.05~0.12)/0.08(4~13)/7(494~589)/5752.3中—好
乌什2T3h13(0.01~2.13)/0.64(0.1~3.87)/1.04(21~360)/154(417~435)/4300.62
依拉2T3h19(0.08~2.41)/0.98(0.28~3.24)/1.07(41~213)/85(419~441)/4310.6
神木4T3h23(0.66~3.59)/1.75(1.7~5.81)/2.93(97~188)/142(442~448)/4450.71中—好
神木1T3h27(0.29~9.08)/1.78(0.36~23.95)/4.75(59~301)/149(412~446)/4310.6中—好

Table 2

Physical and chemical properties of oil and reservoirs types in Awate, Wushi and Wensu areas"

构造井号深度/m层位物性参数原油类型

油气藏

类型

化学参数

密度

/(g/cm3

黏度

/(mPa·s)

凝点 /℃

蜡含量

/%

气油比/(m3/m3Pr/PhPr/nC17Ph/nC18
阿瓦特阿瓦33 518~3 556E1-2k0.801.107.3011.0047 497轻质常规油湿气藏1.470.10.08
乌什凹陷神木26 002~6 018K1s0.811.6814.4316.235 970轻质常规油凝析气藏2.160.250.13
乌参16 005~6 052K1s0.811.322.8310.115 836轻质常规油凝析气藏1.410.260.21
神木15 117~5 143K1s0.833.8021.5013.30405轻质常规油油藏2.360.150.06
温宿凸起古木11 346.5~1 354N1j0.974 476.004.004.30/重质稠油油藏0.350.280.2
新温地1833.5~835N1j0.9170.7330.005.67/中质稠油油藏///
新温地2842~859N1j0.9142.6930.014.48/中质常规油油藏///

Fig.3

Characteristics of terpene biomarkers from typical source rocks in western Kuqa Depression"

Table 3

Crude oil, oil sands and source rock whole oil or chloroform bitumen "A" carbon isotope in Wushi Sag and its periphery"

井号或露头层位深度/m样品类型全油/氯仿沥青“A”碳同位素
小台兰河T3h/灰色泥岩<-29‰
阿托依纳克J1y/深灰色泥岩>-26.2‰
卡普沙良河J2q/页岩-29‰~-26.2‰
神木1K1s51 17.2~5 142.5灰色荧光细砂岩-31.6‰~-30.8‰
神木1K1s5 117~5 140.5原油-29.6‰~-29.1‰
神木2K1s6 002~6 018原油-29.2‰
乌参1K1s6 038.5~6 084原油-29‰~-27.6‰
新温地2N1j842.4~859.3原油-29.2‰~-28.9‰
古木1N1j1 346.5~1 354原油-30.4‰
塔拉克油苗//油苗-27.2‰

Fig.4

Characteristics of terpene biomarkers in oil sands, crude oil and oil seedlings in Wushi Sag and its periphery"

Fig.5

Relationship between crude oil biomarker parameters and total oil carbon isotopes in Wushi-Yingmai area, western Kuqa Depression"

Table 4

Biomarker parameters and whole oil carbon isotope data in Wushi-Yingmai area, western Kuqa Depression"

区块井号或露头层位样品类型深度/m全油碳同位素/‰C30重排藿烷/C29藿烷三环萜烷 C19/C21
乌什神木1K原油5 140.5-29.60.580.64
乌参1K原油6 002~6 005-290.482.11
神木2K原油6 002~6 018-29.20.401.38
温宿古木1N原油1 346.5~1 354-30.40.780.49
塔拉克油苗塔拉克油苗/原油/-27.22.073.86
博孜博孜3K原油5 971.5~5 985.5-27.91.792.91
博孜12K原油6 884.5~6 920-28.31.592.18
博孜1K原油7 014~7 084-26.91.873.53
博孜102K原油6 760~6 885-27.51.503.55
却勒却勒1E原油5 759.1~5 769.29-27.31.082.56
羊塔羊塔5E原油5 310~5 315-27.51.053.20
玉东玉东2K原油4 728~4 748-280.552.07
玉东7K原油4 964~4 965-28.70.451.67
玉东6K原油4 745~4 751-27.050.562.21
英买英买17E原油4 635.63~4 671.24-300.340.46
英买7原油5 219~5 277-300.390.22
英买7E原油4 672.5~4 685-29.50.360.62
英买34S原油5 384~5 398-30.10.420.50
英买32原油5 408~5 412.7-29.20.390.67

Fig.6

Fluorescence picture(a) and hydrocarbon biomarker characteristics(b) of inclusions in Well Shenmu 1"

Table 5

Statistical table of oil and gas maturity in Awate, Wushi and Wensu areas"

井号深度/m层位天然气成熟度/%原油成熟度/%
阿瓦33 518~3 556E1-2k/1.06
神木26 002~6 018K1s/0.91
乌参16 005~6 020K1s0.980.94
神木15 141.5K1s1.150.89
古木11 374.5~1 384.5N1j/0.85
新温地2842~859N1j/0.94

Fig.7

Current vitrinite reflectance contour map of the bottom boundary of Triassic Huangshanjie Formation in Wushi-Awate area"

Fig.8

Burial history, geothermal history and histogram of homogenization temperature of fluid inclusions in Well Wucan 1"

Fig.9

Oil and gas migration pattern diagram in Awate-Wushi area (see section position in Fig.1)"

1 周延钊.库车坳陷乌什—神木地区油气成藏条件研究[D].青岛:中国石油大学(华东),2016: 26-30.
ZHOU Y Z. Conditions of Petroleum Accumulation in Wushi-Shenmu Area of Kuqa Depression[D]. Qingdao:China University of Petroleum(East China), 2016:26-30.
2 贾进华,周东延,张立平,等.塔里木盆地乌什凹陷石油地质特征[J].石油学报,2004,25(6):12-17.
JIA J H, ZHOU D Y, ZHANG L P, et al. Petroleum geologic characteristics of Wushi Sag in Tarim Basin[J]. Acta Petrolei Sinica, 2004, 25(6): 12-17.
3 赵力彬,马玉杰,杨宪彰,等.库车前陆盆地乌什凹陷油气成藏特征[J].天然气工业,2008,28(10):21-24.
ZHAO L B, MA Y J, YANG X Z, et al. Characteristics of hydrocarbon pooling in Wushi Sag of Kuqa Foreland Basin[J].Natural Gas Industry,2008,28(10):21-24.
4 龚德瑜,李明,李启明,等.塔里木盆地乌什凹陷原油地球化学特征及油源分析[J].天然气地球科学,2014,25(1):62-69.
GONG D Y, LI M, LI Q M, et al. Geochemical characteristics and origins of the oils in Wushi Sag, Tarim Basin[J]. Natural Gas Geoscience,2014,25(1):62-69.
5 张君峰,高永进,杨有星,等.塔里木盆地温宿凸起油气勘探突破及启示[J].石油勘探与开发,2019,46(1):14-24.
ZHANG J F, GAO Y J, YANG Y X, et al. Oil exploration breakthrough in the Wensu Salient,northwest Tarim Basin and its implications[J].Petroleum Exploration and Development,2019,46(1):14-24.
6 魏强,李贤庆,孙可欣,等.塔里木盆地库车坳陷克深大气田深层天然气成藏地球化学特征[J].天然气地球科学,2019,30(6):897-907.
WEI Q, LI X Q, SUN K X, et al. Geochemical characteristics of deep-seated natural gas accumulation of the Keshen large gas field in the Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2019,30(6):897-907.
7 刘全有,金之钧,王毅,等.塔里木盆地天然气成因类型与分布规律[J].石油学报,2009,30(1):46-50.
LIU Q Y, JIN Z J, WANG Y, et al. Genetic type and distribution of natural gas in Tarim Basin[J].Acta Petrolei Sinica,2009,30(1): 46-50.
8 赵孟军,张宝民.库车前陆坳陷形成大气区的烃源岩条件[J].地质科学,2002,37(增刊):35-44.
ZHAO M J, ZHANG B M. Source rocks for a giant gas-accumulating area in the Kuqa Foreland Depression[J]. Chinese Journal of Geology,2002,37(supplement):35-44.
9 苗继军,贾承造,戴金星,等.南天山前陆冲断带中段乌什—温宿地区构造分析与油气成藏[J].天然气地球科学,2005,16(4): 428-432.
MIAO J J, JIA C Z, DAI J X, et al. Structural analysis and hydrocarbon formation history of Wushi-Wensu area in the mid-south Tianshan Foreland Thrust Belt[J].Natural Gas Geoscience,2005,16(4):428-432.
10 刘玉魁,闵磊,冯游文,等.塔里木盆地乌什凹陷石油地质特征[J].天然气工业,2007,27(1): 24-26.
LIU Y K, MIN L, FENG Y W, et al. Petroleum geologic features of Wushi Sag in the Tarim Basin[J].Natural Gas Industry,2007,27(1):24-26.
11 杨有星,高永进,张君峰,等.新疆塔里木盆地温宿凸起石油地质条件新认识[J].中国地质调查,2019,6(4):11-16.
YANG Y X, GAO Y J, ZHANG J F, et al. New understanding of petroleum geological conditions of Wensu Bulge in Tarim Basin, Xinjiang[J].Geological Survey of China,2019,6(4):11-16.
12 赵亮.乌什凹陷中新生界构造特征及有利油气区预测[D].西安:长安大学,2007:11-12.
ZHAO L. Structural Features and Optimized Oil-bearing Area Forecast of Mesozoic and Cenozoic Erathem in Wushi Sag[D].Xi’an: Chang’an University,2007:11-12.
13 郑民,彭更新,雷刚林,等.库车坳陷乌什凹陷构造样式及对油气的控制[J].石油勘探与开发,2008,35(4):444-451.
ZHENG M, PENG G X, LEI G L, et al. Structural pattern and its control on hydrocarbon accumulations in Wushi Sag Kuche Depression,Tarim Basin[J].Petroleum Exploration and Development,2008,35(4):444-451.
14 夏义平,徐礼贵,李树新,等.塔里木盆地乌什凹陷晚新生代构造变形特征与油气[J].新疆地质,2009,27(3):259-262.
XIA Y P, XU L G, LI S X, et al. Late Cenozoic structural deformation features and petroleum of Wushi Sag of Tarim Basin, NW China[J]. Xinjiang Geology,2009,27(3):259-262.
15 帕日地古丽·布苏克,谢会文,程晓敢,等.塔里木盆地西北缘古木别孜断裂变形特征和构造转换[J].石油勘探与开发,2020,47(4):703-712.
PARIDIGULI·B S K, XIE H W, CHENG X G, et al. Deformation features and tectonic transfer of the Gumubiezi Fault in the northwestern margin of Tarim Basin, NW China[J]. Petroleum Exploration and Development,2020,47(4): 703-712.
16 邢恩袁,庞雄奇,肖中尧,等.库车坳陷中生界烃源岩排烃史与资源潜力[J].石油天然气学报,2012,34(4):36-40.
XING E Y, PANG X Q, XIAO Z Y, et al. Hydrocarbon expulsion history of Mesozoic source rocks and resource potential in Kuqa Depression[J]. Journal of Oil and Gas Technology,2012,34(4):36-40.
17 杨帆,贾进华.塔里木盆地乌什凹陷白垩系冲积扇—扇三角洲沉积相及有利储盖组合[J].沉积学报,2006,24(5):681-689.
YANG F, JIA J H. Alluvial fan and fan-delta sedimentary facies and favorable assemblage of reservoir and seal of Wushi Sag(Cretaceous) in Tarim Basin[J]. Acta Sedimentologica Si-nica,2006,24(5): 681-689.
18 张斌,崔洁,顾乔元,等.塔北隆起西部复式油气区原油成因与成藏意义[J].石油学报,2010,31(1): 55-60.
ZHANG B, CUI J, GU Q Y, et al. Oil origin classification in composite hydrocarbon accumulation play in the western Tabei Uplift and its geological significance[J]. Acta Petrolei Sinica,2010,31(1):55-60.
19 肖中尧,黄光辉,卢玉红,等.库车坳陷却勒1井原油的重排藿烷系列及油源对比[J].石油勘探与开发,2004,31(2): 35-37.
XIAO Z Y, HUANG G H, LU Y H, et al. Rearranged hopances in oils from the Quele 1 Well, Tarim Basin, and the significance for oil correlation[J]. Petroleum Exploration and Development,2004,31(2):35-37.
20 杨思博,赖洪飞,李美俊,等.湖相烃源岩有机质甲基菲指数及甲基菲比值与成熟度关系[J].长江大学学报(自然科学版), 2018,15(19):12-17.
YANG S B, LAI H F, LI M J, et al. The relationship between methylphenanthrene index, methylphenanthrene ratio and maturity in lacustrine source rocks[J]. Journal of Yangtze University (Natural Science Edition),2018,15(19):12-17.
21 黄海平,周树青,初振淼,等.生物降解作用对原油中烷基菲分布的影响[J].现代地质,2005,19(3):416-424.
HUANG H P, ZHOU S Q, CHU Z M, et al. The effect of biodegradation on alkylated phenanthrene distributions in reservoired oils[J]. Geoscience,2005,19(3):416-424.
22 张振红,吕修祥,杨明慧,等.塔里木盆地乌什凹陷石油地质特征[J]. 西安石油大学学报(自然科学版),2004,19(4):29-31.
ZHANG Z H, LV X X, YANG M H, et al. Petroleum geologic features of Wushi Sag in the Tarim Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2004,19(4):29-31.
23 吕修祥,金之钧,周新源,等.塔里木盆地乌什凹陷温宿凸起油气勘探前景[J]. 中国石油大学学报(自然科学版),2006,30(1):17-25.
LV X X,JIN Z J,ZHOU X Y, et al. Oil and gas exploration prospect in Wushi Sag and Wensu Uplift of Tarim Basin[J]. Journal of China University of Petroleum (Natural Science Edition),2006,30(1):17-25.
24 吴海,赵孟军,李伟强,等.库车坳陷阿瓦特地区油气动态演化过程[J].断块油气田,2016,23(3):294-299.
WU H, ZHAO M J, LI W Q, et al. Dynamic hydrocarbon accumulation process in Awate District of Kuqa Depression[J].Fault-Block Oil & Gas Field,2016,23(3):294-299.
[1] Hai-tao QIAN, Dong-xu SU, Imin ABLIMIT, Xue-yong WANG, Zong-hao LI, Guo-dong WANG. Petroleum geological characteristics and exploration potential in slope area of Well Pen⁃1 Western Depression in Junggar Basin [J]. Natural Gas Geoscience, 2021, 32(4): 551-561.
[2] Fei-fei GUO, Guang-di LIU. The distribution of high-quality source rocks in He3 Member and hydrocarbon accumulation characteristics in Nanyang Depression, Nanxiang Basin [J]. Natural Gas Geoscience, 2021, 32(3): 405-415.
[3] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[4] Yan-Ming SAI, Hui TIAN, Jie LI, Yin-Shan LIU, Bin ZHANG, Jun-Jie LIU. Recent research progresses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems [J]. Natural Gas Geoscience, 2020, 31(7): 939-951.
[5] Lin-xian CHI, Zhi-yao ZHANG, Guang-you ZHU, Hai-ping HUANG, Jian-fa HAN, Jing-fei LI. The molecular geochemical evidence of two accumulation stages of the Silurian reservoirs in Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 471-482.
[6] Nan XUE, Guang-you ZHU, Xiu-xiang LÜ, Tao HE, Zheng-hui WU. Advances in geochronology of hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(12): 1733-1748.
[7] Hu Han-wen, Zhang Yuan-yuan, Zhuo Qin-gong, Jia Cheng-zao, Guo Zhao-jie. Hydrocarbon charging history of the lower petroleum system in the southern Junggar Basin: Case study of the Qigu Oil Field [J]. Natural Gas Geoscience, 2019, 30(4): 456-467.
[8] Liang Xiao, Tong Ming-sheng, Liang Feng, Deng Bin, Liu Wei, Li Fei, Ma Wen-xin, Liu Bo-wen. Characteristics of the east section of the Late Permian Yanting-Pengxi intracratonic sag and its controlling effects on the hydrocarbon  accumulation of the Changxing Formation in the middle Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(2): 176-189.
[9] Jiang Chan, Gu Yi-fan, Zhang Jie-wei, Jiang Yu-qiang, Xu Chang-hai, Liao Yi-sha. Multi-stage fluids charge and hydrocarbon accumulation of Changxing Formation reef reservoir in eastern Longgang area,NE Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(2): 190-202.
[10] Li Yan-li, Gou Ying-chun, Ma Xin-ming, Li Cheng-cheng, Wang Pu, Chen Fang-fang. Reservoir characteristics of bedrock gas reservoir in Pingxi area,Qaidam Basin [J]. Natural Gas Geoscience, 2019, 30(2): 219-227.
[11] Lin-tao Li,Ke-qiang Wu,Jian-she Liang,Gui-hua Chen,Lu Zhang,Guang-shan Guo. The domination of tight sand gas accumulation by the Zijinshan thermal event in the block B, eastern Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(10): 1430-1438.
[12] Kui Ma,Ping Shen,Ze-cheng Wang,Xing-wang Tian,Han-lin Peng,Hua Wang,Xi-hua Zhang,Yi-ting Sun,Bing Luo,Yun-long Wang,Dai-lin Yang. Natural gas exploration potential of Longwangmiao Formation on the north slope of Chuanzhong paleo⁃uplift from the characteristics of “Four Paleo” [J]. Natural Gas Geoscience, 2019, 30(10): 1451-1464.
[13] Hong Zhang,Xian-zheng Zhao,Ju-feng Wang,Hai-tao Liu,Wen-ya Jiang,Chang-yi Zhao,Wei Zhang. Characteristics of unconformity and its effect on hydrocarbon accumulations in Guantao Formation in the southern high slope of Qikou Sag, Bohai Bay Basin [J]. Natural Gas Geoscience, 2019, 30(10): 1465-1476.
[14] Fu Ning, Liu Jian-sheng. Hydrocarbon generation and accumulation characteristics of three type source rocks of Liu Ⅱ segment in Beibuwan Basin [J]. Natural Gas Geoscience, 2018, 29(7): 932-941.
[15] Xiao Dun-qing, Jiang Wen-ya, Pu Xiu-gang, Wang Na, Yue Yun-fu, Sun Chao-nan, Dai Kun, Hua Shuang-jun. Natural gas formation conditions and resource potential in mid-deep strata of the Qikou Sag,Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1409-1421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[2] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[3] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[4] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[5] LIU Quan-you;Liu Wen-hui;Krooss B M;WANG Wan-chun;DAI Jin-xing. ADVANCES IN NITROGEN GEOCHEMISTRY OF NATURAL GAS[J]. Natural Gas Geoscience, 2006, 17(1): 119 -124 .
[6] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[7] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[8] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .
[9] . THE APPLICATION AND EFFECTIVENESS EVALUATION OF DOUBLE-STEP HORIZONTAL WELLS  IN SUPER-DEEP AND SUPER-THIN MARGIN RESERVOIR OF TARIM[J]. Natural Gas Geoscience, 2006, 17(2): 230 -232 .
[10] ZHANG Li-juan,LI Duo-li,SUN Yu-shan,CHENG Mi. ANALYSIS OF CHARACTERISTICS OF SEDIMENTARY RESERVOIR BETWEEN CRETACEOUS AND PALAEOGENE IN THE WESTERN PART OF THE KUQA DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(3): 355 -360 .