Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (1): 36-48.doi: 10.11764/j.issn.1672-1926.2021.07.004

Previous Articles     Next Articles

Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block, Tarim Basin

Xingxing ZHAO1,2(),Bin LI1,2,Guanghui WU1,2,Jianfa HAN3,Baozhu GUAN3,Chunguang SHEN3   

  1. 1.School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
    3.PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2021-05-19 Revised:2021-06-29 Online:2022-01-10 Published:2022-01-26
  • Supported by:
    The Regional Innovation Cooperation Project of Sichuan Province, China(21QYCX0050)

Abstract:

In view of the coexistence of multi-phase oil and gas reservoirs in the Ordovician System in Tazhong Ⅲ block, Tarim Basin, there are three kinds of oil and gas reservoirs in the Ordovician System in Tazhong Ⅲ block by studying the physical properties of natural gas components and molecular geochemical parameters of oil reservoirs, which are condensate, volatile oil reservoirs and light oil reservoirs, crude oil is mature and high maturity oil, natural gas is a mixture of cracked gas from Cambrian subsalt reservoir and dissolved gas from Ordovician crude oil. The physical property parameters of crude oil, natural gas dryness coefficient, carbon isotopic composition, gas to oil ratio and content of H2S show a decreasing trend from northeast to southwest. There is a linear relationship between the maturity of light crude oil and volatile oil and the depth of reservoir, which indicates that there exists multi-stage oil and gas charging in this area. In this paper, the formation and evolution of the Ordovician reservoirs in different periods in the Tazhong Ⅲ block are recovered by using high-precision three-dimensional seismic profiles. It is considered that the thermal evolution of the bottom source rocks is different. The multi-source and multi-stage mixed charging of oil and gas and the vertical drainage of the strike slip faults are the important reasons for the coexistence of multi-phase reservoirs in the Tazhong Ⅲ block. Deep exploration in Tazhong Ⅲ block still has great potential. Deep gas reservoirs exist on a large scale near the Tazhong Ⅰ fault zone and the strong gas invasion area in the northern depression, while deep volatile oil reservoirs and gas reservoirs exist in the weak gas invasion area in the central area. There are still light oil reservoirs in the deep layer with no gas invasion in the southwest.

Key words: Tazhong Ⅲ block, Multiphase oil and gas reservoirs, Multi-stage oil and gas charging, Strike-slip fault, Accumulation model

CLC Number: 

  • TE122.1

Fig. 1

Structural map of Yijianfang Formation in Tazhong Ⅲ block"

Fig.2

The intersection diagram of Ordovician crude oil properties in Tazhong Ⅲ block"

Table 1

The Ordovician natural gas component analysis table in Tazhong Ⅲ block"

油气相态类型项目甲烷/%乙烷/%丙烷/%天然气干燥系数/无量纲氮气/%硫化氢/%
凝析气最大值87.14.681.720.9910.171.51
最小值79.910.720.110.891.040.06
平均值83.722.930.980.943.7560.71
挥发油区天然气最大值89.61270.9416.032
最小值63.42.430.680.610.230.04
平均值79.925.922.440.866.070.62
轻质油区天然气最大值74.2810.357.150.8315.241.75
最小值61.177.473.290.694.20.002
平均值68.58.484.580.798.80.51

Fig. 3

The intersection diagram of Ordovician natural gas properties in Tazhong Ⅲ block"

Fig. 4

The PVT experimental phase diagram of the Ordovician fluid in Tazhong Ⅲ block"

Fig. 5

Phase distribution and migration and accumulation trend of oil and gas reservoirs in Tazhong Ⅲ block."

Fig. 6

The chromatographic chromatogram of saturated hydrocarbon of the Ordovician crude oil in Tazhong Ⅲ block"

Table 2

The carbon isotope data analysis table of the Ordovician natural gas in Tazhong Ⅲ block"

油气相态

类型

井位δ13C/
C1C2C3iC4nC4
凝析气TZ451-50.6-35.9-30.6-29.7-
TZ86-47.2-34.8-30.6-31-29.8
ZG14-1-48-34.6-28.9-28.9-27.1
ZG14-47.9-34.5-29.1-27.9-27.8
ZG45-H1-45.8-36.7-31.6-28.6-30
ZG16-2H-51-36.5-31.6-29.7-29.9
ZG17-51-34.8-29.7-28.4-30.2
挥发油ZG162-1H-49.9-36.2-30.8-30.7-29.6
ZG15-H6-52.2-36.5-30.8-29.5-
ZG162-2H-51.2-36.5-30.7-30.4-29.2
ZG166H-53.4-36.3-29.5--28.5
ZG26-49.3-37.2-32.6-30.8-31.7
ZG162-51-36.5-31.6-30-29.7
ZG22-51.5-36.7-30.4-29.6-29.5
轻质油ZG15-5H-52.2-36.5-30.8-29.5-
ZG157H-52.9-37.4-31.4-30.9-30
ZG262-54.9-37.9-32.3-30.8-30.2
ZG16-51.6-36.6-31.2-29.8-31.4
ZG15-61.4-40.4-30.9-31.4-30.1

Fig. 7

The genetic identification map of the Ordovician natural gas in Tazhong Ⅲ block"

Fig. 8

The equivalent vitrinite reflectance distribution in Tazhong Ⅲ block"

Table 3

The mass chromatographic analysis table of amantadane of Ordovician crude oil in Tazhong Ⅲ block"

项目凝析油挥发油轻质油
ZG14-1ZG14-H7ZG15ZG27CZG291-H12
AS/(μg/g)132.78138.661 217.1091.8442.47
AD/(μg/g)51.4736.15643.70107.8318.87
(AS+AD)/(μg/g)184.25174.811 861.07199.6761.34

Fig.9

The analysis diagram of amantane compounds in Tazhong Ⅲ block"

Fig.10

The reservoir evolution model of profile in fault zone F117 in Tazhong Ⅲ block (A-A’ section)"

Fig. 11

The oil and gas enrichment pattern diagram in Tazhong Ⅲ block"

1 孙东, 潘建国,胡再元,等. 塔里木盆地塔中Ⅲ区奥陶系碳酸盐岩油气成藏主控因素及有利区带[J]. 沉积学报, 2019, 37(4):868-877.
SUN D, PAN J G, HU Z Y, et al. Main factors controlling carbonate reservoir formation: Case study of Tazhong block III, Tarim Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4): 868-877.
2 ZHU G, LI J, CHI L, et al. The influence of gas invasion on the composition of crude oil and the controlling factors for the reservoir fluid phase[J]. Energy & Fuels, 2020, 34(3): 2710-2725.
3 AKHMADIYAROV A A. Influence of the Composition of Oxygen-Carbon Dioxide Gas Mixture on the Oxidation Process of Heavy Crude Oils[C]. 19th SGEM International Multidisciplinary Scientific Geoconference EXPO Proceedings, 2019.
4 乔桂林, 赵永强,沙旭光,等. 塔里木盆地塔中隆起南坡油气勘探领域[J]. 石油实验地质, 2019, 41(5):630-637.
QIAO G L, ZHAO Y Q, SHA X G, et al. Oil and gas exploration domains on the southern slope of central Tarim Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(5): 630-637.
5 云金表,宁飞,宋海明,等. 塔里木盆地塔中及周边地区下古生界构造样式与成因演化[J]. 地质科学, 2019,54(2):319-329.
YUN J B, NING F, SONG H M, et al. Research on structural kinematics characteristics and mechanism in Lower Paleozoic of the Tazhong and adjacent area in Tarim Basin[J]. Scientia Geologica Sinica, 2019, 54(2):319-329.
6 刘炜博,鞠治学,韩剑发,等. 塔里木盆地塔中Ⅲ区奥陶系碳酸盐岩各层系油气成藏特征及富集规律[J]. 天然气地球科学, 2015, 26(S2):125-137.
LIU W B,JU Z X,HAN J F,et al. Hydrocarbon accumulation characteristics and enrichment law of various carbonate layer series of the Ordovician System in Ⅲ-zone, central Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S2): 125-137.
7 庞雄奇,林会喜,郑定业,等.中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向[J]. 地质力学学报, 2020, 26(5):673-695.
PANG X Q, LIN H X, ZHENG D Y, et al. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China[J]. Journal of Geomechanics, 2020, 26(5):673-695.
8 LIU D, CAI C, HU Y, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123:104752.
9 张利明,王小强,侯大力,等.塔里木盆地近临界油气藏相态特征[J]. 天然气地球科学, 2020, 31(3):370-374.
ZHANG L M,WANG X Q, HOU D L, et al. Phase behavior characteristics of near-critical oil and gas reservoirs in Tarim Basin[J]. Natural Gas Geoscience,2020,31(3):370-374.
10 ZHU G Y, CAO Y, YAN L, et al. Potential and favorable areas of petroleum exploration of ultra-deep marine strata more than 8 000 m deep in the Tarim Basin, Northwest China[J]. Journal of Natural Gas Geoscience, 2018, 3(6):321-337.
11 ZHU G Y, CHEN F, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
12 ZHU G, LI J, ZHANG Z, et al. Stability and cracking threshold depth of crude oil in 8000 m ultra-deep reservoir in the Tarim Basin[J]. Fuel, 2020, 282(3):118777.
13 LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3-4): 249-264.
14 LI J, ZENG Y X, WEI G, et al. Geochemical characteristics and exploration potential of natural gas in Anyue Gas Field, the largest uncompartmentalized carbonate gas field in China[C].The 15th National Meeting on Organic Geochemistry in China, 2015.
15 ZHANG Z, ZHANG Y, ZHU G, et al. Impacts of thermochemical sulfate reduction, oil cracking, and gas mixing on the petroleum fluid phase in the Tazhong area, Tarim Basin, China[J]. Energy & Fuels, 2019, 33(FEB·):968-978.
16 马安来,金之钧,李慧莉,等.塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.
MA A L, JIN Z J, LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
17 刘华, 景琛, 刘雅利,等. 油气运移表征参数优选及运移方式判识[J]. 石油实验地质, 2018, 40(3):424-430.
LIU H, JING C, LIU Y L, et al. Optimization of hydrocarbon migration parameters and identification of migration pattern[J]. Petroleum Geology & Experiment,2018,40(3):424-430.
18 SHEN W, CHEN J, WANG Y, et al. The origin, migration and accumulation of the Ordovician gas in the Tazhong III region, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2019, 101: 55-77.
19 晏继发,马安来,李贤庆,等. 金刚烷化合物在深层油气地球化学研究中的应用[J]. 现代地质, 2020, 34(4):812-820.
YAN J F, MA A L, LI X Q, et al. Application of diamondoids in geochemical research of deep oil and gas[J]. Geoscience, 2020, 34(4): 812-820.
20 宋换新, 文志刚, 包建平. 金刚烷的形成演化及其在油气勘探领域的应用[J]. 石油天然气学报, 2016, 38(2):1-12.
SONG H X, WEN Z G, BAO J P. Generation and thermal evolution of diamondoids and their application in oil and gas exploration[J]. Journal of Oil and Gas Technology,2016,38(2):1-12.
21 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5):851-860.
MA A L. New advancement in application of diamondoids on organic geochemistry[J]. Natural Gas Geoscience, 2016, 27(5): 851-860.
22 CHEN J H,FU J M,SHENG G Y,et al. Diamondoid hydro⁃carbon ratios:Novel maturity indices for highly mature oils[J].Organic Geochemistry,1996,25(3-4):179-190.
23 马安来,金之钧,朱翠山. 塔里木盆地顺南 1 井原油硫代金刚烷系列的检出及意义[J]. 石油学报,2018,39(1):42-53.
MA A L, JIN Z J, ZHU C S. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1,Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53.
24 兰晓东, 吕修祥. 塔中地区下奥陶统鹰山组油气成藏期及其对油气分布的影响[J]. 地质论评, 2015, 61(Z1):144-145.
LAN X D, LÜ X X. Hydrocarbon accumulation period and its influence on hydrocarbon distribution in the Lower Ordovician Yingshan Formation in Tazhong area[J]. Geological Review, 2015, 61(Z1):144-145.
25 杨海军,于双,张海祖,等.塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J].地球化学,2020,49(6):666-682.
YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic System in the Tarim Basin[J]. Geochimica, 2020,49(6):666-682.
26 LIU Y C,DONG S Y,ZHAO C H. Thermal evolution and the maturation of the deeply buried Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. Arabian Journal of Geosciences,2021,14(13):1-19.
27 管文胜,韩剑发,刘永福,等. 塔里木盆地北部YM32下古生界潜山油气藏油气运移[J].地球科学, 2020,45(4):227-238.
GUAN W S, HAN J F, LIU Y F, et al. Characteristics of hydrocarbon migration of YM32 Lower Paleozoic buried hill reservoirs in north Tarim Basin[J]. Earth Science, 2020, 45(4):227-238.
28 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930.
29 任战利, 崔军平, 祁凯,等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2):22-30.
REN Z L, CUI J P, QI K, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020,40(2):22-30.
30 CHEN C, WANG Y, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107:116-126.
[1] Shu-ren FENG, Cong ZHANG, Jian-guo ZHANG, Mao-po QIAO, Chun-chun LIU, He PENG, Chong-hao MAO. Model of high rank coalbed methane in Zhengzhuang block in the southern Qinshui Basin, China [J]. Natural Gas Geoscience, 2021, 32(1): 136-144.
[2] Bin LI, Wen-hua MEI, Qi-qi LI, Qin-gong ZHUO, Xue-song LU, Qiang GUO. Influence of tectonic evolution of foreland basin in northwestern Sichuan Basin on Paleozoic marine hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(7): 993-1003.
[3] Shi-wei YI, Ming-peng LI, Shu-juan XU, Bao-wen CUI, Qi-an MENG, Xue-qiong WU, Hong-gang CHENG. Structural characteristics and hydrocarbon accumulation models of Shuangcheng Sag, Songliao Basin [J]. Natural Gas Geoscience, 2020, 31(6): 761-772.
[4] De-bo MA, Wen-juan CUI, Xiao-wan TAO, Hong-kui DONG, Zhao-hui XU, Ting-ting LI, Xiu-yan CHEN. Structural characteristics and evolution process of faults in the Lunnan low uplift, Tabei Uplift in the Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 647-657.
[5] Jin DU, De-bo MA, Wei LIU, Ying-hui CAO, Yi-min ZHAO, Jing-shun QI, Min YANG. Structural characteristics and formation mechanism of faults in Xiaotangnan area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 658-666.
[6] Dian-wei ZHANG, Zhi-liang HE, Gan-lu LI. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 428-435.
[7] Hong-hui LI, Ying-hui CAO, Zhi-yong CHEN, Min YANG, Yi-min ZHAO, Hong-kui DONG, Lei YAN, De-dao DU, Shan WANG, Wei LIU, Zhao-hui XU, De-bo MA, Guang-you ZHU, Xiu-yan CHEN, Peng-fei YANG. The faults and deep petroleum exploration in the Lunnan lower uplift of the Tabei rise, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(12): 1677-1686.
[8] Shi-wei YI, Ming-peng LI, Shu-juan XU, Xu-jie GUO, Bao-wen CUI, Qi-an MENG, Hong-gang CHENG, Xue-qiong WU, Jun-feng CUI, Li-xian WANG. Accumulation condition and model of buried hill in the Central Uplift, Songliao Basin [J]. Natural Gas Geoscience, 2020, 31(12): 1663-1676.
[9] Yin Shuai, Li Ai-rong, Chen Meng-na, Zhao Jin-li, Ding Wen-long, Zhao Jing-zhou, Cao Xiang-yu. Stretch-convergence stress effect tectonic analysis and gas controlling of strike-slip fault zone in strong deformed zone [J]. Natural Gas Geoscience, 2018, 29(11): 1568-1574.
[10] Zhong Xue-mei, Wang Jian, Li Xiang-yang, Wang Quan, Dong Xiong-ying, Ma Xue-feng, Zhang Guo-wei. Geological conditions,resource potential and exploration direction of natural gas in Jizhong Depression,Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1433-1442.
[11] Yang Hai-bo, Wang Yu-tao, Guo Jian-chen, He Wen-jun, Lan Wen-fang . Geological conditions,resource potential and exploration direction of natural gas in Junggar Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1518-1530.
[12] Ding Bo-zhao,Zhang Guang-rong,Chen Kang,Geng Wei,Zhu Xing-hui,Fan Chang. Genesis research of collapsed-paleocave systems in Sinian carbonate strata in central Sichuan Basin,SW China [J]. Natural Gas Geoscience, 2017, 28(8): 1211-1218.
[13] Liang Jin-qiang,Fu Shao-ying,Chen Fang,Su Pi-bo,Shang Jiu-jing,Lu Hong-feng,Fang Yun-xin. Characteristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea [J]. Natural Gas Geoscience, 2017, 28(5): 761-770.
[14] Yang Zhan-long, Wu Qing-peng, Huang Yun-feng, Huang Xiao-peng. Hydrocarbon accumulation and exploration domain of northern thrust belts in Turpan-Kumul Basin [J]. Natural Gas Geoscience, 2016, 27(6): 974-981.
[15] Wu Ya-dong, Sun Chun-yan, Wang Dong-xu, Jiang Tao, Huang Ying, Gong Jian-hua. Hydrocarbon distribution characteristics and main controlling factors ofaccumulation in South Konys Oilfield in South Turgay Basin,Kazakhstan [J]. Natural Gas Geoscience, 2016, 27(11): 2013-2022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[3] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[4] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[5] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[6] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[7] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 66 -73 .
[8] JIA Cheng-ye~1,2,XIA Bin~1,WANG He~1,ZHANG Sheng-li~1. CHARACTERISTIC OF TECTONIC EVOLUTION AND PETROLEUM GEOLOGY IN LISHUI SAG, EAST CHINA SEA BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 397 -401 .
[9] YUAN Jianying. TECHNICAL COUNTERMEASURES AND MAIN EXPLORATION DOMAINS  ANALYSIS,NORTHWEST OF CHINA[J]. Natural Gas Geoscience, 2006, 17(5): 601 -605 .
[10] . [J]. Natural Gas Geoscience, 2002, 13(3-4): 15 .