Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (12): 1771-1784.doi: 10.11764/j.issn.1672-1926.2021.06.005

Previous Articles     Next Articles

Research on evaluation method of movable hydrocarbon resources of shale oil in the Chang 73 sub-member in the Ordos Basin

Shixiang LI1,2(),Xinping ZHOU1,2(),Qiheng GUO1,2,Jianping LIU1,3,Jiangyan LIU1,2,Shutong LI4,5,Bo WANG1,2,Qiqi LÜ6   

  1. 1.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields,Xi’an 710018,China
    2.Exploration and Development Research Institute of PetroChina Changqing Oilfield Company,Xi'an 710018,China
    3.Branch Exploration Department of PetroChina Changqing Oilfield Company,Xi'an 710018,China
    4.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    5.Key Laboratory of Petroleum Resources,Gansu Province,Lanzhou 730000,China
    6.Geosciences School of Yangtze University,Wuhan 430100,China
  • Received:2021-03-12 Revised:2021-06-22 Online:2021-12-10 Published:2021-12-27
  • Contact: Xinping ZHOU E-mail:sxlee1981_cq@petrochina.com.cn;zhxp13_cq@petrochina.com.cn
  • Supported by:
    The National Natural Science Foundation of China(42102170);the China National Science & Technology Major Project(2017ZX05001002)

Abstract:

A set of fine-grained sediments of organic-rich shale interbedded with thin layer silt and fine grained sandstones developed in the Chang 73 sub-member of the Ordos Basin. It has the characteristics of overall hydrocarbon generation and general oil-bearing. It is of great significance to clarify the hydrocarbon content, occurrence state and hydrocarbon components of different types of fine-grained sediments for the potential analysis and sweet spot selection of this type of shale oil resources. This study is based on the systemical core testing and analysis of the Chang 73 sub-member of Well CY1, movable hydrocarbon research on four fine-grained sedimentary rock types is carried out, including black shale, dark mudstone, siltstone and fine-grained sandstone, by using multi-granular multi-polar sequential extraction methods, and the movable hydrocarbon resources of shale oil in the Chang 73 sub-member is evaluated in the Ordos Basin. The research results show that the hydrocarbon content and its components of different types of fine-grained sediments under different particle size crushing conditions(1 cm3,0.5 cm3,150 mesh) are analyzed by multi-particle multi-polar sequential extraction. The unit extraction amount of hydrocarbon is fine-grained sandstone>black shale>siltstone>dark mudstone. The soluble organic matter extracted by step 1 and step 2 is mainly light-medium components and belongs to movable hydrocarbons. Soluble organic matter extracted by steps 3 and 4 is immobile hydrocarbon. Based on the above test methods, the movable hydrocarbon of black shale, dark mudstone, siltstone and fine sandstone in the Chang 73 sub-member are 3.35 mg/g, 1.45 mg/g, 3.28 mg/g and 4.48 mg/g, respectively. The movable hydrocarbon resources of 220 km2 shale oil in Cheng 80 well block in the Chang 73 sub-member were evaluated. The preliminary evaluation results were (0.37-0.51)×108 t. The distribution area of shale oil in the Chang 73 sub-member in the Ordos Basin is about 1.5×104 km2. Through analogy analysis, it is estimated that its movable hydrocarbon resources are (25-35)×108 t. This type of shale oil is expected to become a new replacement area for oil exploration in the basin.

Key words: Ordos Basin, Chang 73 sub-member shale oil, Movable hydrocarbons, Multi-grain and multi-polar extraction

CLC Number: 

  • TE122.2

Fig.1

Sample depth information of multi-granularity and multi-polar extraction"

Fig.2

TOC content of experimental samples from Well CY1"

Fig.3

Relative mineral content of experimental samples from Well CY1"

Table 1

Multi-granularity and multi-polarity extraction simulation experimental conditions and results"

样品基本信息实验条件实验结果
岩性深度 /m

抽提

顺序

样品形式溶剂系统溶剂用量 /(mL/g)

抽提

方式

抽提次数 /次

单步抽提量

/(mg/g)

抽提率

/%

总抽提次数 /次抽提总量 /(mg/g)

轻烃恢复量

/(mg/g)

可动烃 /(mg/g)不可动烃 /(mg/g)

黑色

页岩

2 025.02步骤1块状1 cm3

二氯甲烷/甲醇

(93∶7)

0.4

171.758 835755.0380.7363.351 92.421 8
步骤2块状0.5 cm3160.857 117
步骤3150目粉末状260.993 520
步骤4

四氢呋喃/丙酮/甲醇

(50∶25∶25)

0.15161.428 328

暗色

泥岩

2 021.95步骤1块状1 cm3

二氯甲烷/甲醇

(93∶7)

0.490.199 810582.0780.3031.453 52.461 2
步骤2块状0.5 cm390.449 822
步骤3150目粉末状260.979 647
步骤4

四氢呋喃/丙酮/甲醇

(50∶25∶25)

0.15140.449 222
粉砂岩2 051.36步骤1块状1 cm3

二氯甲烷/甲醇

(93∶7)

0.4181.701 548533.549 80.5183.283 10.784 1
步骤2块状0.5 cm3141.063 630
步骤3150目粉末状220.358 110
步骤4

四氢呋喃/丙酮/甲醇

(50∶25∶25)

0.15140.426 012
细砂岩2 031.48步骤1块状1 cm3

二氯甲烷/甲醇

(93∶7)

0.4143.104 270604.313 70.6304.483 10.597 1
步骤2块状0.5 cm3160.748 917
步骤3150目粉末状160.203 14
步骤4

四氢呋喃/丙酮/甲醇

(50∶25∶25)

0.15140.394 09

Fig.4

Flow chart of simulation experiment of multi-granularity and multi-polar extraction"

Fig.5

Single-step extraction rate and cumulative extraction ratio of different lithologic samples in the Chang 73 sub-member"

Fig.6

Comparison of total hydrocarbon chromatograms of step-by-step extracts from dark mudstone of Chang 73 sub-member in 2 021.95 m of Well CY1"

Fig.7

Comparison of total hydrocarbon chromatograms of step-by-step extracts from black shale of Chang 73 sub-member in 2 025.02 m of Well CY1"

Fig.8

Comparison of total hydrocarbon chromatograms of step-by-step extracts from fine sandstone of Chang 73 sub-member in 2 031.48 m of Well CY1"

Fig.9

Comparison of total hydrocarbon chromatograms of step-by-step extracts from siltstone of Chang 73 sub-member in 2 051.36 m of Well CY1"

Table 2

Movable hydrocarbon resources of Chang 73 sub-member shale oil in Cheng 80 well block in the middle of the lake basin"

岩石类型总体积/(108 m3岩石密度/(t/m3平均可动烃含量/(mg/g3页岩油可动烃资源量/(108 t)
合计(0.37~0.51)×108 t
黑色页岩122.23.350.09
暗色泥岩212.41.450.07
粉砂岩体积法估算可动烃资源量(0.13~0.18)×108 t
细砂岩体积法估算可动烃资源量(0.08~0.12)×108 t
1 邹才能,潘松圻,荆振华,等.页岩油气革命及影响[J].石油学报,2020,41(1):1-12.
ZOU C N,PAN S Q,JING Z H,et al.Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica,2020,41(1):1-12.
2 罗承先,周韦慧.美国页岩油开发现状及其巨大影响[J].中外能源,2013,18(3):33-40.
LUO C X, ZHOU W H. Shale oil development in US and implications[J]. Sino-Global Energy, 2013,18(3):33-40.
3 周庆凡,金之钧,杨国丰,等.美国页岩油勘探开发现状与前景展望[J].石油与天然气地质,2019,40(3):469-477.
ZHOU Q F, JIN Z J, YANG G F, et al. Shale oil exploration and production in the U.S.: Status and outlook[J]. Oil & Gas Geology, 2019,40(3):469-477.
4 金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗?[J].石油与天然气地质,2019,40(3):451-458.
JIN Z J, BAI Z R, GAO B, et al. Has China ushered in the shale oil and gas revolution[J]. Oil & Gas Geology,2019,40(3):451-458.
5 付金华,李士祥,牛小兵,等.鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J].石油勘探与开发,2020,47(5):870-883.
FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development,2020,47(5):870-883.
6 付锁堂,付金华,牛小兵,等.庆城油田成藏条件及勘探开发关键技术[J].石油学报,2020,41(7):777-795.
FU S T, FU J H, NIU X B, et al. Accumulation conditions and key exploration and development technologies in Qingcheng Oilfield[J]. Acta Petrolei Sinica,2020,41(7):777-795.
7 付金华,牛小兵,淡卫东,等.鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J].中国石油勘探,2019,24(5):601-614.
FU J H, NIU X B, DAN W D, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration,2019,24(5):601-614.
8 杨智,邹才能.“进源找油”:源岩油气内涵与前景[J].石油勘探与开发,2019,46(1):173-184.
YANG Z, ZOU C N. “Exploration petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J].Petroleum Exploration and Development,2019,46(1):173-184.
9 杨智,侯连华,陶士振,等.致密油与页岩油形成条件与“甜点区”评价[J].石油勘探与开发,2015,42(5):555-565.
YANG Z, HOU L H, TAO S Z, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J].Petroleum Exploration and Development,2015,42(5):555-565.
10 蒋启贵,黎茂稳,钱门辉,等.不同赋存状态页岩油定量表征技术与应用研究[J].石油实验地质,2016,38(6):842-849.
JIANG Q G, LI M W, QIAN M H, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016,38(6):842-849.
11 谌卓恒,黎茂稳,姜春庆,等.页岩油的资源潜力及流动性评价方法——以西加拿大盆地上泥盆统Duvernay页岩为例[J].石油与天然气地质,2019,40(3):459-468.
CHEN Z H, LI M W, JIANG C Q, et al. Shale oil resource potential and its mobility assessment: A case study of Upper Devonian Duvernay shale in western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019,40(3):459-468.
12 李浩,陆建林,王保华,等.渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J].石油实验地质,2020,42(4):632-638.
LI H, LU J L, WANG B H, et al. Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag, Bohai Bay Basin[J].Petroleum Geology & Experiment, 2020,42(4):632-638.
13 包友书,张林晔,张金功,等.渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J].石油与天然气地质,2016,37(3):408-414.
BAO Y S, ZHANG L Y, ZHANG J G, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J].Oil & Gas Geology, 2016,37(3):408-414.
14 梁晓伟,关梓轩,牛小兵,等.鄂尔多斯盆地延长组7段页岩油储层储集性特征[J].天然气地球科学,2020,31(10):1489-1500.
LIANG X W, GUAN Z X, NIU X B, et al. Reservoir characteristics of shale oil in Chang 7 Member of Yanchang Formation,Ordos Basin[J].Natural Gas Geoscience, 2020,31(10):1489-1500.
15 王勇,刘惠民,宋国奇,等.济阳坳陷页岩油富集要素与富集模式研究[J].高校地质学报,2017,23(2):268-276.
WANG Y, LIU H M, SONG G Q, et al. Enrichment controls and models of shale oil in the Jiyang Depression, Bohai Bay Basin[J]. Geological Journal of China Universities, 2017,23(2):268-276.
16 卢双舫,薛海涛,王民,等.页岩油评价中的若干关键问题及研究趋势[J].石油学报,2016,37(10):1309-1322.
LU S F, XUE H T, WANG M, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016,37(10):1309-1322.
17 余志远,章新文,谭静娟,等.泌阳凹陷页岩油赋存特征及可动性研究[J].石油地质与工程,2019,33(1):42-46.
YU Z Y, ZHANG X W, TANG J J, et al. Occurrence characteristics and mobility of shale oil in Biyang Sag[J]. Petroleum Geology and Engineering,2019,33(1):42-46.
18 JARVIE D M. Shale Rsource Systems for Oil and Gas: Part 2 Shale-oil Resource Systems[M]//BREYER J A. Shale Reservoirs: Giant Resources for the 21st Century: AAPG Memoir 97. Texas: AAPG, 2012:89-119.
19 李水福,胡守志,张冬梅,等.自由烃差值法评价页岩含油性的思想、方法及应用[J].地球科学,2019,44(3):929-938.
LI S F, HU S Z, ZHANG D M, et al. Idea, method and application of evaluating shale oil potential by free hydrocarbon difference[J]. Earth Science, 2019,44(3):929-938.
20 张林晔,包友书,李钜源,等.湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(6):641-649.
ZHANG L Y, BAO Y S, LI J Y, et al. Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin[J].Petroleum Exploration and Development,2014,41(6):641-649.
21 王文广,郑民,王民,等.页岩油可动资源量评价方法探讨及在东濮凹陷北部古近系沙河街组应用[J].天然气地球科学,2015,26(4):771-781.
WANG W G, ZHENG M, WANG M, et al. The discussion of the evaluation method of shale oil movable resources amount and Palaeogene Shahejie Formation application effect in the northern of Dongpu Depression[J].Natural Gas Geoscience, 2015,26(4):771-781.
22 薛海涛,田善思,王伟明,等.页岩油资源评价关键参数——含油率的校正[J].石油与天然气地质,2016,37(1):15-22.
XUE H T, TIAN S S, WANG W M, et al. Correction of content-one key parameter in shale oil resource assessment[J].Oil & Gas Geology, 2016,37(1):15-22.
23 朱日房,张林晔,李钜源,等.页岩滞留液态烃的定量评价[J].石油学报,2015,36(1):13-18.
ZHU R F, ZHANG L Y, LI J Y, et al. Quantitative evaluation of residual liquid hydrocarbons in shale[J]. Acta Petrolei Sinica, 2015,36(1):13-18.
24 潘银华,黎茂稳,孙永革,等.低熟湖相泥质烃源岩中不同赋存状态可溶有机质的地球化学特征[J].地球化学,2018,47(4):335-344.
PAN Y H, LI M W, SUN Y G, et al. Geochemical characterization of soluble organic matter with different existing states in low-maturity argillaceous sources rocks of lacustrine facies[J]. Geochimica, 2018,47(4):335-344.
25 杨华,席胜利,魏新善,等.鄂尔多斯多旋回叠合盆地演化与天然气富集[J].中国石油勘探, 2006, 11(1):17-24,6.
YANG H, XI S L, WEI X S, et al. Evolution and natural gas enrichment of multicycle superimposed basin in Ordos Basin[J]. China Petroleum Exploration, 2006, 11(1):17-24,6.
26 武富礼,李文厚.李玉宏,等.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J]. 古地理学报,2004,6(3):307-315.
WU F L, LI W H, LI Y H, et al. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin[J]. Journal of Palaeogeography, 2004,6(3):307-315.
27 李士祥,牛小兵,柳广弟,等.鄂尔多斯盆地延长组长7段页岩油形成富集机理[J].石油与天然气地质,2020,41(4):719-729.
LI S X, NIY X B, LIU G D, et al. Formation and accumulation mechanism of shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020,41(4):719-729.
28 杨华,窦伟坦,刘显阳,等.鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报,2010,28(2):254-263.
YANG H, DOU W T, LIU X Y, et al. Analysis on sedimentary facies of Member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedimentologica Sinica, 2010,28(2):254-263.
29 钱门辉,蒋启贵,黎茂稳,等.湖相页岩不同赋存状态的可溶有机质定量表征[J].石油实验地质,2017,39(2):278-286.
QIAN M H, JIANG Q G, LI M W, et al. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J].Petroleum Geology & Experiment, 2017,39(2):278-286.
30 王擎,柳桐,柏静儒,等.逐级化学提取(SCEE)技术及其在煤微量元素赋存状态研究中的应用[J].化工技术与开发,2010,39(1):25-29.
WANG Q, LIU T, BAI J R, et al. Sequential chemical extraction technology and its applications in coal trace dlement occurrence study[J]. Technology & Development of Chemical Industry, 2010,39(1):25-29.
31 杨燕,雷天柱,关宝文,等.滨浅湖相泥质烃源岩中不同赋存状态可溶有机质差异性研究[J].岩性油气藏,2015,27(2):77-82.
YANG Y, LEI T Z, GUAN B W, et al. Differences of solvable organic matters with different occurrence states in argillaceous source rocks of coastal shallow-lake facie[J]. Lithologic Reservoirs,2015,27(2):77-82.
32 宋国奇,张林晔,卢双舫,等.页岩油资源评价技术方法及其应用[J].地学前缘,2013,20(4):221-228.
SONG G Q, ZHANG L Y, LU S F, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013,20(4):221-228.
33 郎东升,郭树生,马德华.评价储层含油性的热解参数校正方法及其应用[J].海相油气地质,1996,1(1):53-55.
LANG D S, GUO S S, MA D H. The correlation method of pyrolysis parameters to evaluated hydrocarbon-bearing samples from reservoirs[J]. Marine Origin Petroleum Geology, 1996,1(1):53-55.
34 付金华,李士祥,侯雨庭,等.鄂尔多斯盆地延长组长7段Ⅱ类页岩油风险勘探突破及其意义[J].中国石油勘探,2020,25(1):78-92.
FU J H, LI S X, HOU Y T, et al. Breakthrough of risk exploration of Class Ⅱ shale oil in Chang7 member of Yanchang Formation in the Ordos Basin and its significance[J]. China Petroleum Exploration,2020,25(1):78-92.
[1] Junlin CHEN, Peng WANG, Yuanyuan GAO, Kai LI, Ming YANG, Jiaqiang ZHANG, Jiacheng LI, Shutong LI. Application of multiple stepwise regression method in the analysis of the relationship between porosity and tight sandstone: Case study of Chang 8 reservoir in Jiyuan area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1372-1383.
[2] Wanchun WANG, Liming JI, Dongjun SONG, Dongwei ZHANG, Chengfu LÜ, Long SU. Residual oil from pyrolysis experiments of different sandstone/oil shale ratios and its geological significance: Case study of the Upper Triassic Chang 7 Member of the Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1142-1150.
[3] Xianyang LIU, Shixiang LI, Qiheng GUO, Xinping ZHOU, Jiangyan LIU. Characteristics of rock types and exploration significance of the shale strata in the Chang 73 sub-member of Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1177-1189.
[4] Shengli XI, Wuling MO, Xinshe LIU, Lei ZHANG, Jian LI, Zhengliang HUANG, Min WANG, Chunlin ZHANG, Qiuying ZHU, Yu YAN, Nengwu ZHOU. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1 [J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
[5] Zhou YU, Jin-gao ZHOU, Cheng-shan LI, Xiao-jiao SONG, Chao LUO, Xing-ning WU, Dong-xu WU, Cong HU. Tectonic-lithofacies paleogeographic characteristics of Ordovician Kelimoli and Wulalike stages in the western edge of Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 816-825.
[6] Xuan-hao GUO, Cheng-qian TAN, Jun-hui ZHAO, Xin ZHAO, Jin WANG. Different influence of diagenesis on micro pore-throat characteristics of tight sandstone reservoirs: Case study of the Triassic Chang 7 member in Jiyuan and Zhenbei areas, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 826-835.
[7] Cheng CHEN, Yu QI, Zi-liang YU, Bo WANG. Seismic identification of superposition relationship of the shallow water delta channel sand bodies: Case study of Linxing S area in eastern Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(5): 772-780.
[8] Hua WANG, Yue-hua CUI, Xue-ling LIU, Zhen-zhen QIANG, Shi-cheng WANG. Multi-layer horizontal wells development for tight sandstone gas reservoir: Case study of tight gas reservoir model zone in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(4): 472-480.
[9] Gui-zhen LIU, Wei GAO, Jia-sheng WEI, Wen TANG. Sedimentary characteristics and sequence stratigraphy in a mixed silicilastic-carbonate depositional system: Case study of Benxi Formation in Gaoqiao area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(3): 382-392.
[10] Guang-shan GUO, Ying-hong LIU, Lin-tao LI. Study on variation law and controlling factors of coal gas content in north section of east margin of Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(3): 416-422.
[11] Jinhua FU, Wen GUO, Shixiang LI, Xianyang LIU, Dangxing CHENG, Xinping ZHOU. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1749-1761.
[12] Xianyang LIU, Weiwei YANG, Shixiang LI, Lin SUN, Rui CHANG. Occurrence states and quantitative characterization of lacustrine shale oil from Yanchang Formation in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1762-1770.
[13] Shutong LI,Shixiang LI,Jiangyan LIU,Mingyi YANG,Junlin CHEN,Shan ZHANG,Deyi CUI,Jiacheng LI. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1785-1796.
[14] Liming XU,Qiheng GUO,Yuanbo LIU,Jiangyan LIU,Xinping ZHOU,Shixiang LI. Characteristics and controlling factors of deep-water gravity flow sandstone reservoir in the Chang 73 sub-member in Ordos Basin: Case study of Well CY1 in Huachi area [J]. Natural Gas Geoscience, 2021, 32(12): 1797-1809.
[15] Yanli MA,Honggang XIN,Wenzhong MA,Zhenhua MAO,Shuxun ZHOU,Weidong DAN. The main controlling factors on the enrichment and sweet-spot area prediction of Chang 7 Member shale oil in northern Shaanxi area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1822-1829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Guang-zhi, HU Bin, DENG Tian-long,YUAN Zi-yan . Petroleum Geological Significance of Microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13 -17 .
[2] ZHANG Rong-hu ;ZHANG Hui-liang ;MA Yu-jie ;SHEN Yang ;LI Chang ;ZHANG Li-juan . Origin of Extra Low Porosity and Permeability High Production Reseroirs: A Case from Bashijiqike Reservoir of Dabei 1 Oil Field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75 -82 .
[3] . THE APPLICATION OF C AND O ISOTOPE ANALYSE IN SEDIMENT ENVIRONMENT OF QIANJIANG SALINE LAKE[J]. Natural Gas Geoscience, 2004, 15(3): 320 -322 .
[4] XIANG Ting-sheng, WAN Jia-yun, CAI Chun-fang. TREATMENT OF CRUDE OILS USING SULPHATE-REDUCING BACTERIA H2S FORMATIONS[J]. Natural Gas Geoscience, 2004, 15(2): 171 -173 .
[5] WEI Li-hua, GUO Jing-yi, YANG Zhan-long, HUANG Yun-feng. ANALYSIS ON KEY TECHNIQUES OF LOG CONSTRAINEDLITHOLOGICAL INVERSION[J]. Natural Gas Geoscience, 2006, 17(5): 731 -735 .
[6] ZHANG Ji;CHEN Feng-xi;LU Tao;WANG Dong-xu;WANG Yong;LIU Hai-feng; WANG Cai-li. Horizontal Well Geosteering Technology and Its Application in Development of Jingbian Gasfield[J]. Natural Gas Geoscience, 2008, 19(1): 137 -140 .
[7] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[8] . STUDY ON PRODUCING ABILITY OF RESERVOIRS AND INFLUENCE FACTORS IN HETEROGENEOUS[J]. Natural Gas Geoscience, 2005, 16(1): 93 -97 .
[9] . THE STUDY OF GEOLOGY COURSE AND EXPERIMENT SIMULATION FORFORMING ULTRA-LOW WATER SATURATION IN TIGHTSANDSTONES GAS RESERVOIRS[J]. Natural Gas Geoscience, 2005, 16(2): 186 -189 .
[10] .
THE RESEARCH OF BANQIAO ABANDONED CONDENSATED OIL AND GAS FIELD BY WATER INJECTION
[J]. Natural Gas Geoscience, 2003, 14(4): 298 -301 .