Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (8): 1190-1200.doi: 10.11764/j.issn.1672-1926.2021.06.003

Previous Articles     Next Articles

Accumulation regularity and target of tight sandstone gas in low hydrocarbon generation intensity area of northern Tianhuan Depression, Ordos Basin

Huitao ZHAO1,2(),Xiaopeng LIU1,2(),Li JIA1,2,Jianling HU1,2,Zixing LU1,2,Guoxiao ZHOU1,2   

  1. 1.Exploration and Development Research Institute of PetroChina Changqing Oilfield Company,Xi 'an 710018,China
    2.National Engineering Laboratory for Low Permeability petroleum Exploration and Development,Xi 'an 710018,China
  • Received:2021-03-22 Revised:2021-06-09 Online:2021-08-10 Published:2021-08-25
  • Supported by:
    China National Science & Technology Major Project(2016ZX05047?001)

Abstract:

Hydrocarbon generation intensity of the Upper Paleozoic coal measure source rocks in the northern section of Tianhuan Depression, Ordos Basin, is (10-20)×108 m3/km2, average porosity of reservoir is 8.3%, average permeability is 0.94×10-3 μm2,and the fractures are relatively developed. The gas test effluent is common, and many wells have obtained high-yield industrial air flow. The gas-water relationship is complex, the gas enrichment rule is unclear, and it is difficult to optimize the exploration target. Through the systematic analysis of the geological conditions and main controlling factors of the formation of the study area, it is clear that the north section of Tianhuan Depression is a low hydrocarbon generating intensity area, and the gas reservoir type is a structural-lithologic complex gas reservoir. The buoyancy adjustment during the transformation period plays a key role in the accumulation of natural gas accumulation. The favorable zone is the preferred area relative to the high structural part of the high quality reservoir area. Through the fine description of hydrocarbon generation intensity, local structure of the formation and comprehensive evaluation of reservoir, favorable zone is selected and the breakthrough in the exploration of Upper Paleozoic gas in the northern section of Tianhuan Depression is actively promoted.

Key words: Low hydrocarbon generation intensity area, The enrichment law of tight gas, Exploration ideas, Favorable zone, Tianhuan Depression

CLC Number: 

  • TE122

Fig.1

Regional tectonic location map of the northern part of Tianhuan Depression"

Table 1

Statistical table of core fracture identification results in the northern part of Tianhuan Depression (selected)"

井名裂缝密度条/m裂缝长度/cm缝宽/mm充填程度产状
B10.23511~321~1.5未充填近垂向缝
B20.14710~401~1.5未充填近垂向缝
B30.27635~381~1.5未充填近垂向缝
B40.2434~590.5~1半充填、未充填斜向缝、近垂向缝
B50.25715~680.5~1半充填、未充填近垂向缝
B60.29830~2591未充填近垂向缝
B70.160401~1.5未充填近垂向缝
B80.1306~891未充填近垂向缝
B90.1415~1010.5~1半充填、未充填近垂向缝
B100.11126~1201未充填近垂向缝
B110.04714~1091~2未充填近垂向缝
B120.2085~502~4未充填斜向缝、近垂向缝

Table 2

Evaluation parameters of Upper Paleozoic source rocks in the northern part of Tianhuan Depression (evaluation criteria from Ref.[30])"

层位岩性

有机碳

TOC)/%

生烃潜量

S1+S2)/(mg/g)

氯仿沥青“A”

含量/%

总烃含量/10-6评价结果
山1段泥岩0.16~5.482.82(62)0.03~14.111.81(21)0.01~0.410.048(20)120.1~351.7193.4(16)较好
山2段泥岩、炭质泥岩0.28~14.214.21(78)0.10~14.111.91(45)0.05~1.070.021(17)80.2~231.8126.1(14)
太原组炭质泥岩16.21~26.2422.02(5)5.55~20.3714.58(4)0.033~1.5010.413(4)234.3~848.1541.2(2)
泥岩0.06~7.993.80(37)0.13~4.271.44(13)0.009~0.0430.015(5)71.4~176.2104.5(3)
羊虎沟组炭质泥岩20.53~26.3624.52(4)16.10~23.5920.77(4)0.016~0.1860.065(3)242.5~402.9322.7(2)
泥岩0.09~9.894.90(15)0.15~3.662.95(11)0.016~0.1290.046(6)113.6~311.7236.2(5)
山2段31.53~69.044.81(10)21.89~79.5943.32(6)0.050~1.0660.487(4)2?112.4~2?893.22?539.8(3)较好
太原组45.57~76.2267.87(13)34.21~120.9370.79(4)0.087~1.5150.576(4)2?341.1~2?776.72?558.9(2)
羊虎沟组49.42~72.5558.75(9)40.40~109.4169.01(2)0.071~0.2800.351(2)921.82~921.82921.82(1)较差—较好

Fig.2

Hydrocarbon generation intensity of Upper Paleozoic in the northern part of Tianhuan Depression"

Fig.3

Pore type composition histogram of He 8 reservoir in the northern part Tianhuan Depression"

Table 3

Table of geochemical characteristics formation water of He 8 reservoir in the northern part of Tianhuan Depression"

井号

(K++Na+

/(mg/L)

Ca2+

/(mg/L)

Mg2+

/(mg/L)

Cl-

/(mg/L)

HCO3-

/(mg/L)

SO42-

/(mg/L)

总矿化度

/(g/L)

水型钠氯系数Na+/Cl-钠钙系数 Na+/2Ca2+

水型(博雅尔

斯基分类)

A112 51410 0601 22134 6721237 23365.7CaCl20.551.06
A24 6044 05674914 8945411 44726.5CaCl20.470.97
A39 2065 82058922 6312374 64943.1CaCl20.611.35
A45 1958 28360323 74415179439CaCl20.330.53
A53 5435 23930814 5164701 13425CaCl20.370.58
A64 2751 94074911 33242784520CaCl20.571.88
A73 5473 8801 28414 5704411 69125CaCl20.370.78
A86 8752 65060315 7132721 58828CaCl20.662.21

Fig.4

Burial history of Well L26"

Fig.5

NMR spectra of the same sample under different charge pressure difference"

Fig.6

Relationship between hydrocarbon generation intensity and minimum throat radius of He 8 gas reservoir in the northern part of Tianhuan Depression"

Fig.7

Relationship between throat radius and movable fluid saturation of He 8 reservoir in the northern part of Tianhuan Depression"

Fig.8

Relationship between reservoir physical properties and gas saturation in He 8 reservoir of Well L50"

Fig.9

Relationship between reservoir physical properties and gas saturation of He 8 reservoir in Well S120-49-74"

Fig.10

Tight gas reservoir model of the northern part of Tianhuan Depression"

Table 4

Comparison of geological conditions and gas reservoir characteristics of He 8 gas reservoir between the study area and the east of the basin"

对比指标盆地东部天环坳陷北段
生烃特征煤层厚度/m12~20,平均14.71~5,平均3.1
暗色泥岩厚度/m30~70,平均50.525~70,平均44.5
热演化程度/%1.4~2.21.2~2.2

生烃强度

/(108 m3/km2

28~4010~20
储层特征岩性岩屑石英砂岩、岩屑砂岩石英砂岩
渗透率/10-3 μm20.3~0.60.5~1.0
喉道中值半径/μm0.220.46
构造特征构造区带及地层坡度伊陕斜坡,坡度1°~2°天环坳陷,西翼2°~5°、东翼2°~3°
裂缝发育特征裂缝不发育裂缝较发育
成藏特征成藏过程压差充注,一次成藏,形成岩性气藏浮力在压差充注基础上二次调整,气水发生分异,形成构造—岩性气藏
气藏含气饱和度气藏含气饱和度40%~90%,地层水以束缚水为主,天然气过充注气藏含气饱和度30%~75%,地层水中自由水比例较高,天然气藏欠充注
1 李建忠,郭彬程,郑民,等.中国致密砂岩气主要类型、地质特征与资源潜力[J」.天然气地球科学,2012,23(4):607-615.
LI J Z, GUO B C, ZHENG M, et al. Main types, geological features and resource potential of tight sandstone gas in China[J].Natural Gas Geoscience,2012,23(4):607-615.
2 李振铎,胡义军,谭芳.鄂尔多斯盆地上古生界深盆气研究[J].天然气工业,1998, 18(3):10-17.
LI Z D,HU Y J,TAN F. A study of the deep basin gas in the Upper Paleozoic in Eeduosi Basin[J]. Natural Gas Industry,1998, 18(3):10-17.
3 金之均, 张金川. 深盆气藏及其勘探对策[J]. 石油勘探与开发,1999, 26 (1):1-5.
JIN Z J, ZHANG J C. Exploration strategy for deep basin gas reservoirs[J]. Petroleum Exploration and Development,1999, 26 (1):1-5.
4 傅成德,胡文瑞,李文阳,等.鄂尔多斯深盆气研究[M].北京:石油工业出版社,2001:5-120.
FU C D, HU W R,LI W Y,et al. A Study of the Deep Basin Gas in Ordos Basin[M]. Beijing: Petroleum Industry Press,2001:5-120.
5 王涛.中国深盆气[M].北京:石油工业出版社,2002:1-39.
WANG T. The Deep Basin Gas in China[M]. Beijing: Petroleum Industry Press, 2002:1-39.
6 邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-331.
ZOU C N,TAO S Z,YUAN X J,et al. The formation conditions and distribution characteristics of continuous reservoirs[J]. Acta Petrolei Sinica,2009,30(3):324-331.
7 邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-682.
ZOU C N, TAO S Z, YUAN X J,et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J].Petroleum Exploration and Development, 2009,36(6):669-682.
8 郭迎春,宋岩,庞雄奇,等. 连续型致密砂岩气近源累计聚集的特征及成因机制[J].地球科学, 2016,41(3):433-440.
GUO Y C, SONG Y, PANG X Q, et al. Character and genetic mechanism of near-source accumulated accumulation for continous-type tight-sand gas[J].Earth Science, 2016,41(3):433-440.
9 彭威龙,庞雄奇,向才富,等. 苏里格地区上古生界连续型致密砂岩气成藏条件及过程分析[J].地质科技情报, 2016,41(3):180-185.
PENG W L,PANG X Q, XIANG C F,et al. Condition and process of continuous tight sandstone gas accumulation of the Upper Paleozoic in Sulige[J].Geological Science and Technology Information,2016,41(3):180-185.
10 杨智,付金华,刘新社,等.苏里格气田上古生界连续型致密气形成过程[J].深圳大学学报理工版,2016,33(3):221-233.
YANG Z,FU J H,LIU X S,et al.Formation process of Upper Paleozoic continuous tight sandstone gas reservoir in the Sulige Gas Field[J].Journal of Shenzhen University Science and Engineering,2016,35(3):221-233.
11 曹青,赵靖舟,付金华,等.鄂尔多斯盆地上古生界准连续型气藏气源条件[J].石油与天然气地质, 2013,34(5):584-591.
CAO Q,ZHAO J Z,FU J H,et al. Gas source conditions of quasi-continuous accumulation of the Upper Paleozoic in Ordos Basin[J]. Oil & Gas Geology,2013,34(5):584-591.
12 李军,赵靖舟,凡元芳,等. 鄂尔多斯盆地上古生界准连续型气藏天然气运移机制[J].石油与天然气地质,2013,34(5):592-600.
LI J,ZHAO J Z,FAN Y F,et al. Gas migration mechanism of quasi-continuous accumulation in the Upper Paleozoic of Ordos Basin[J]. Oil & Gas Geology,2013,34(5):592-600.
13 李得路,李荣西,赵卫卫,等. 准连续型致密砂岩气藏地质条件和成藏特征——以鄂尔多斯盆地中部上古生界山西组为例[J].兰州大学报:自然科学版,2017,53(3):299-308.
LI D L, LI R X, ZHAO W W,et al. Geological conditions and accumulation characteristics of “quasi-contionuous” tight sandstone gas reservoirs: A case study of Shanxi Formation in the middle of Ordos Basin[J].Journal of Lanzhou University:Natural Sciences, 2017,53(3):299-308.
14 杨华,席胜利,魏新善,等.鄂尔多斯盆地大面积致密砂岩气成藏地质理论[M].北京:科学出版社,2016:279-299.
YANG H,XI S L,WEI X S,et al. Geological Theory of Large Area Tight Sandstone Gas Accumulation in Ordos Basin[M].Beijing: Science Press,2016:279-299.
15 李剑,魏国齐,谢增业,等. 中国致密砂岩大气田成藏机理与主控因素——以鄂尔多斯盆地和四川盆地为例[J].石油学报,2013,34(增刊1):14-28.
LI J,WEI G Q,XIE Z Y,et al. Accumulation mechanism and main controlling factors of large tight sandstone gas fields in China: Cases study on Ordos Basin and Sichuan Basin[J]. Acta Petrolei Sincia, 2013,34(supplement 1):14-28.
16 魏国齐,张福东,李君,等.中国致密砂岩气成藏理论进展[J].天然气地球科学,2016,27(2):199-210.
WEI G Q, ZHANG F D, LI J, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience, 2016,27(2):199-210.
17 刘晓鹏,赵会涛,闰小雄,等.克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J].天然气地球科学,2019,30(3):331-343.
LIU X P, ZHAO H T, YAN X X,et al. The geological characteristics of tight sandstone gas and exploration target evaluation in the craton basin: Case study of the Upper Paleozoic of Ordos Basin[J].Natural Gas Geoscience,2019,30(3):331-343.
18 何自新,付金华,席胜利,等. 苏里格大气田成藏地质特征[J]. 石油学报,2003,24(2):6-12.
HE Z X, FU J H, XI S L, et al. Geological features of reservoir formation of Sulige Gas Field[J]. Acta Petrolei Sinica, 2003,24(2):6-12.
19 付金华,段晓文,姜英昆. 鄂尔多斯盆地上古生界天然气成藏地质特征及勘探方法[J].中国石油勘探,2001,6(4):68-75.
FU J H, DUAN X W, JIANG Y K. Geological features and exploration methods of natural gas reservoir formation in the Upper Paleozoic Erathem in the Ordos Basin[J]. China Petroleum Exploration,2001, 6(4):68-75.
20 杨华,付金华,魏新善. 鄂尔多斯盆地天然气成藏特征[J]. 天然气工业,2005,25(4):5-8.
YANG H, FU J H, WEI X S, Characteristics of natural gas reservoir formation in E’Erduosi Basin[J]. Natural Gas Industry,2005,25(4):5-8.
21 闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发,2000,27(4):26-29.
MIN Q, FU J H, XI S L, et al. Characteristics of natural gas migration and accumulation in the Upper Paleozoic of Ordos Basin[J]. Petroleum Exploration and Development,2000,27(4):26-29.
22 杨华,付金华,刘新社,等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发,2012,39(3):295-303.
YANG H,FU J H,LIU X S,et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development,2012,39(3):295-303.
23 杨仁超,樊爱萍,韩作振,等.鄂尔多斯盆地上古生界天然气成藏的地质特征[J]. 山东科技大学学报:自然科学版,2005,24(1):53-56.
YANG R C,FAN A P,HAN Z Z,et al. Geological features of natural gas pool formation in the Upper Paleozoic erathem in the Erdos Basin[J]. Journal of Shandong University of Science and Technology:Natural Science,2005,24(1):53-56.
24 刘新社,周立发,侯云东.运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏[J].石油学报,2007,28(6):37-42.
LIU X S, ZHOU L F, HOU Y D. Study of gas charging in the Upper Paleozoic of Ordos Basin using fluid inclusion[J]. Acta Petrolei Sinica, 2007, 28(6): 37-42.
25 李仲东,惠宽洋,李良,等.鄂尔多斯盆地上古生界天然气运移特征及成藏过程分析[[J].矿物岩石,2008, 28(3): 77-83.
LI Z D,HUI K Y,LI L,et al. Analysis of characteristics of gas migration and reservoir-forming in the Upper Paleozoic of northern Ordos Basin[J]. Journal of Mineralogy and Petrology, 2008, 28(3): 77-83.
26 杨俊杰. 中国天然气地质学:卷四[M]. 北京: 石油工业出版社,1996: 1-13.
YANG J J. Natural Gas Geology in China: Vol.4 [M]. Beijing: Petroleum Industry Press,1996: 1-13.
27 党犇, 赵虹, 付金华,等. 鄂尔多斯盆地沉积盖层构造裂缝特征研究[J]. 天然气工业,2005,25(7): 14-16.
DANG B, ZHAO H, FU J H, et al. Characteristics of structural fractures in sedimentary strata of E’Erduosi Basin[J].Natural Gas Industry,2005,25(7): 14-16.
28 曾联波, 漆家福, 王成刚, 等. 构造应力对裂缝形成与流体流动的影响[J]. 地学前缘,2008,15(3): 292-298.
ZENG L B, QI J F, WANG C G,et al. The influence of tectonic stress on fracture formation and fluid flow[J]. Earth Science Frontiers,2008,15(3): 292-298.
29 戴金星.各类烷烃气的鉴别[J]. 中国科学:B辑,1992,35(10): 1246-1257.
DAI J X. Identification and distinction of various alkane gases[J]. Science in China: Series B, 1992, 35(10): 1246-1257.
30 董泽亮, 李贤庆,张明扬,等. 中—高热演化阶段煤系烃源岩生气潜力评价[J]. 煤炭科学技术, 2015, 42(12):129-136.
DONG Z L, LI X Q, ZHANG M Y, et al. Gas potential evaluation of coal measures source rock with medium-high thermal evolution stage[J]. Coal Science and Technology, 2015, 42(12):129-136.
31 张福东, 李君, 魏国齐, 等. 低生烃强度区致密砂岩气形成机制: 以鄂尔多斯盆地天环坳陷北段上古生界为例 [J]. 石油勘探与开发, 2018, 45(1): 73-81.
ZHANG F D, LI J, WEI G Q,et al. Formation mechanism of tight sandstone gas in areas of low hydrocarbon generation intensity: A case study of the Upper Paleozoic in north Tianhuan Depression in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 73-81.
32 HOU D J,LI X Q,TANG Y J. New evidence for the origin of natural gas in Ordos Basin from hydrocarbons of oil water[J]. Chinese Science Bulletin, 2002,47(10): 835-856.
33 LI X Q,HOU D J,HU G Y,et al. Characteristics of organic components in formation waters and their relations to natural gas reservoirs in central Ordos Basin[J].Chinese Journal of Geochemistry,2003,22(2):116-122.
34 LI X Q,HOU D J,TANG Y J,et al. Molecular geochemical evidence for the origin of natural gas from dissolved hydrocarbon in Ordovician formation waters in central Ordos Basin[J]. Chinese Journal of Geochemistry,2003,22(3): 193-202.
35 楼章华,尚长健,姚根顺,等. 桂中坳陷及周缘海相地层油气保存条件[J].石油学报,2011,32(3): 432-441.
LOU Z H,SHANG C J,YAO G S,et al. Hydrocarbon preservation conditions in marine strata of the Guizhong Depression and its margin[J].Acta Petrolei Sinica,2011,32(3): 432-441.
36 楼章华,朱蓉. 中国南方海相地层水文地质地球化学特征与油气保存条件[J].石油与天然气地质,2006,27(5):584-593.
LOU Z H,ZHU R. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions in marine strata in southern China[J].Oil and Gas Geology, 2006, 27(5): 584-593.
37 高山林,韩庆军,杨华,等. 鄂尔多斯盆地燕山运动及其与油气关系[J].长春科技大学学报,2000,30(2):353-358.
GAO S L, HAN Q J, YANG H, et al. Yanshanian movement in Ordos Basin and its relationship with distribution of oil and gas[J].Journal of Changchun University of Science and Technology, 2000,30(2):353-358.
38 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化改造的时空坐标及其成藏(矿)响应[J].地质学报,2006,80(5):617-638.
LIU C Y, ZHAO H G, GUI X J, Space-time coordinate of the evolution and reformation and nearlization response in Ordos Basin[J]. Acta Geologica Sinica,2006,80(5):617-638.
39 聂宗笙. 华北地区的燕山运动[J].地质科学,1985,20(4):320-333.
NIE Z S. The Yanshanian movement in the North Chian[J].Scientia Geologica Sinica,1985,20(4):320-333.
[1] Ting-ting KANG, Feng-quan ZHAO, Xin LIU, Xiao-xue WANG, Yan YI, Hao HE, Xin-xin WANG, Min ZHANG. Main controlling factors of oil and gas enrichment and favorable zones: Case study of 3rd and 4th members of Ordovician Yingshan Formation, northern slope of Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(4): 577-588.
[2] Zhuang-zhuang BAI, Wei YANG, Wu-ren XIE, Hui JIN, Sai-jun WU, Shi-yu MA, Qing-chao CAO. Sequence stratigraphy of Cambrian Xixiangchi Group and development characteristics of intra-platform bank in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 191-204.
[3] . Simulation and exploration direction of Paleogene-Neogene gas systemin the western Qaidam Basin [J]. Natural Gas Geoscience, 2017, 28(1): 82-92.
[4] Wei Guoqi,Zhang Fudong, Li Jun, Yang Shen, Huang Chaoyong, She Yuanqi, JuXiujuan, Zhao Lihua. New progress of tight sand gas accumulation theory and favorable exploration zones in China [J]. Natural Gas Geoscience, 2016, 27(2): 199-210.
[5] LI Bing, DANG Yu-Fang, JIA Chun-Ming, SHI Ji-An, ZHANG Shun-Cun. Sedimentary Facies of Permian Clastic Rocks in Zhongguai-Wuba  Area in Northwestern Margin of Junggar Basin [J]. Natural Gas Geoscience, 2011, 22(3): 432-439.
[6] REN Xiao-jun ; YU Xing-he ;LI Sheng-li ;YUE Yun-lei,;LI Rui-jun . Sedimentary Facies Distribution and Lithologic Traps Recognitionof J1s12 Formation in the Area of Shinan, Junggar Basin [J]. Natural Gas Geoscience, 2008, 19(06): 805-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[3] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[7] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[8] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[9] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[10] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .