Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (9): 1347-1357.doi: 10.11764/j.issn.1672-1926.2021.04.014

Previous Articles     Next Articles

Genetic mechanism and main controlling factors of the Middle Permian Maokou Formation dolomite reservoirs in the eastern Sichuan Basin

Rangbin LI1(),Jinbao DUAN1,Lei PAN1,Hong LI2   

  1. 1.SINOPEC Exploration Company,Chengdu 610041,China
    2.Department of Geology/State Key Laboratory of Continental Dynamics,Northwest University,Xi’an 710069,China
  • Received:2021-01-29 Revised:2021-04-28 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003);the Project of Science and Technology Department of SINOPEC(P20079KXJGZ)

Abstract:

Based on outcrop and core data, a large number of thin section, scanning electron microscope, major element, trace element, rare earth element and strontium isotope analysis data, the formation mechanism of dolomite reservoir of Maokou Formation in eastern Sichuan was analyzed, and three new understandings were obtained: (1) According to the grain structure and occurrence, the dolomite can be further divided into three categories: matrix mosaic dolomite, which is relatively far from the tectonic hydrothermal veins. The matrix "mist core and bright edge" dolomite is mostly associated with the tectonic hydrothermal veins. The structural fracture dolomite is mainly distributed in the tensional tectonic fractures and pores formed by hydrothermal fracture, and is half-filled.(2)The dolomite has undergone two stages of hydrothermal dolomitization. The matrix mosaic dolomite was formed under syndepositional and shallow buried conditions, and the "mist core bright edge" dolomite was formed on the basis of early dolomitization and later hydrothermal reformation. The tectonic fracture dolomites were formed by hydrothermal fluid precipitation.(3)The shoal was the basis of dolomite development, and the basement faults were synsedimentary fault and the migration channels of hydrothermal fluids, which was the key to the formation of dolomite. The south side of the 15# base fault is the preferred target area for dolomite exploration, which provides reference for the Maokou Formation in Sichuan Basin.

Key words: Dolomite reservoir, Genetic mechanism, Maokou Formation, Eastern Sichuan Basin

CLC Number: 

  • TE122.1

Fig.1

Location of the study area(a)and stratigraphic column of Well TL6(b)"

Fig.2

Outcrop, core and microscopic characteristics of dolomite of Maokou Formation in eastern Sichuan Basin"

Fig.3

Microscopic characteristics of different types of dolomite in eastern Sichuan Basin"

Table 1

Major element characteristics of different types of dolomite in Maokou Formation, eastern Sichuan Basin"

剖面/井样品点结构P2O5SO3CaOTiO2MgOSiO2SrOAl2O3MnOFeONiOTotal
回龙场剖面HLC-C-89-001镶嵌状00.07132.180.002 521.127000.001 70.0040.002053.422
HLC-C-89-0020032.14021.8540.0220.0510.3810.0550054.501
HLC-C-89-0030.0130.04232.39021.470.01700.5510.05700.00454.542
HLC-C-89-00400.03332.910.03722.29200.0140.0190.0570.0080.00255.373
HLC-C-89-0050.060.02433.57021.0600.0110.0270.0510054.806
HLC-C-89-0060.0130.03832.67021.85500.0110.0190.0320054.633
HLC-C-89-00700.00532.290.00222.1240.040.0210.020.0320054.536
HLC-C-89-0080.0670.03832.980.00221.872000.0390.0250.0140.03355.074
HLC-C-89-0090.0670.03330.82020.9550.0130.0230.170.0080052.089
二崖剖面ERY2-D-151-014亮边0.033032.7820.00421.330.0070.0040.020.0170.006054.203
ERY2-D-151-0150.053032.859021.0520.0110.0090.1730.0110054.168
ERY2-D-151-016雾心0033.045021.498000.0360.0210.004054.604
ERY2-D-151-0170032.7160.01521.2650.0020.0350.01600.008054.057
ERY2-D-151-01800.00932.3330.00221.6650.020.0120.0380.03600.00454.119
ERY2-D-151-0190.020.06633.0760.02121.3460.0190.0390.0420.0170.0540.0154.71
ERY2-D-151-020亮边0.040.03333.092021.28800.0160.0140.030054.513
ERY2-D-151-0210.0130.00531.990.01921.7490.0270.0070.050.0230053.883
ERY2-D-151-02200.01932.5740.00221.574000.0270.0270.01054.233
ERY2-D-151-0230.020.02832.187021.81700.0250.0690.01900.01254.177
ERY2-D-151-0240.0070.00533.009021.5510.0130.0410.0230.0250.0250.02354.722
ERY2-D-151-0250.0540.04232.405021.27000.0340.0250.0020.01553.847
ERY2-D-151-0260.027032.4960.04421.6380.0330.0110.0260.0340.0140.02754.35
ERY2-D-151-02700.01932.3870.00421.3690.00800.0310.0170.0120.04853.895
ERY2-D-151-0280.0330.00533.515021.5540.0120.0120.03100055.162
TL6井TL6-11-C-016脉体0.0660.07228.248021.4610.0730.0360.0710.060.0390.02150.147
TL6-11-C-0170.033029.7830.04621.1540.010.00500.0560.0510.02651.164
TL6-11-C-0180.013029.596021.5240.0250.007000051.265
TL6-11-C-0190028.9710.01221.670.01000.0090.2550.01550.933
TL6-11-C-0200029.129021.4290.019000.0490.2330.00650.865
TL6-11-C-0210.0070.01429.244021.79900000.153051.217
TL6-11-C-0220.02029.4780.01721.983000.01100051.509
TL6-11-C-0230.033029.024021.980000.0710.149051.257
TL6-11-C-0240029.132022.1790.013000.0190.1780.02151.542
TL6-11-C-0250.073028.998021.8820.0250.0340.0370.0130.0410.00851.111
TL6-18-C-010镶嵌状0.04061.63700.3500.1850000.0152.552
TL6-18-C-0110.0480.06531.9220.01322.6490.0870.060.04300.032054.919
TL6-18-C-0120.0420.00931.3930.01122.0680.0240.0280.020.0270.055053.677
TL6-18-C-0130.0660.00931.693022.0120.1800.01400.0430.02254.039
TL6-18-C-0140.0480.06132.177022.2140.0100.0410.0470.018054.616
TL6-18-C-0150.0060.04431.995022.0990.010.0130.0370.0140054.218
TL6-18-C-0160.03031.7390.00621.5360.03900.0180.02900.02153.418
TL6-18-C-0170.0550.07132.086022.5980.05400.0520.030.054055
TL6-18-C-01800.06731.478021.7480.0330.0170.010.0260.076053.455
TL6-18-C-0190.0180.00432.23022.8560.0530.020.0300.027055.238
TL6-18-C-0200.0490.05331.347021.5640.0270.0170.0380.0490.0020.00753.153

Fig.4

Al-Fe-Mn diagram for silicalites from the Middle Permian Maokou Formation in the eastern Sichuan Basin"

Fig.5

Spider web map of micronutrient carbonate rocks in Maokou formation, eastern Sichuan Basin(standardization of the primary mantle by Ref.[12])"

Fig.6

Normalized REE distribution curves of dolomite from different fabric of Maokou Formation in eastern Sichuan Basin(basalt data from Ref.[13])"

Fig.7

Histogram of dolomite coring section of Maokou Formation in eastern Sichuan Basin, Well TL6"

Fig.8

Hydrothermal dolostone model controlled by basement faults and shoals in eastern Sichuan Basin"

1 陈宗清.四川盆地中二叠统茅口组天然气勘探[J].中国石油勘探,2007,12(5):1-11.
CHEN Z Q. Exploration for natural gas in Middle Permian Maokou Formation of Sichuan Basin[J].China Petroleum Exploration, 2007,12(5): 1-11.
2 胡东风,王良军,黄仁春,等.四川盆地东部地区中二叠统茅口组白云岩储层特征及其主控因素[J].天然气工业,2019,36(6):13-21.
HU D F,WANG L J,HUANG R C,et al. Characteristics and main controlling factors of the Middle Permian Maokou dolomite reservoirs in the eastern Sichuan Basin[J]. Natural Gas Industry, 2019,36(6):13-21.
3 陈轩, 赵文智, 张利萍,等.川中地区中二叠统构造热液白云岩的发现及其勘探意义[J].石油学报, 2012,33(4): 562-569.
CHEN X, ZHAO W Z, ZHANG L P,et al. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 562-569.
4 汪华,沈浩,黄东,等.四川盆地中二叠统热水白云岩成因及其分布[J].天然气工业, 2014, 34(9): 25-32.
WANG H, SHEN H, HUANG D, et al. Origin and distribution of hydrothermal dolomites of the Middle Permian in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(9): 25-32.
5 刘宏,马腾,谭秀成,等.表生岩溶系统中浅埋藏构造—热液白云岩成因——以四川盆地中部中二叠统茅口组为例[J].石油勘探与开发,2016,43(6):916-927.
LIU H,MA T,TAN X C, et al.Origin of structurally controlled hydrothermal dolomite in epigenetic karst system during shallow burial: An example from Middle Permian Maokou Formation, central Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2016,43(6):916-927.
6 蒋裕强,谷一凡,李开鸿,等.四川盆地中部中二叠统热液白云岩储渗空间类型及成因[J].天然气工业,2018,38(2):16-24.
JIANG Y Q, GU Y F, LI K H, et al. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, central Sichuan Basin[J].Natural Gas Industry, 2018,38(2):16-24.
7 QI L,GU Y F,HE P W, et al. Hydrothermal dolomitization in the Middle Permian in the central Sichuan Basin, SW China: Evidence from petrology, geochemistry, and fluid inclusions[J]. Arabian Journal of Geosciences,2021,14(1):55.
8 LIU X, GAO S, DIWU C R, et al. Simultaneous in-situ determination of U-Pb age ad trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264.
9 HE R,NING M,HUANG K J, et al. Mg isotopic systematics during early diagenetic aragonite-calcite transition:Insights from the Key Largo Limestone[J]. Chemical Geology,2020,558:119876.
10 张荫本.四川盆地二叠系中的白云岩化[J]. 石油学报, 1982,3(1): 29-33.
ZHANG Y B.Dolomitization in Permian rocks in Sichuan Basin[J]. Acta Petrolei Sinica,1982,3(1): 29-33.
11 ADACHI M,YAMAMOTO K,SUGISAKI R.Hydrothermal chert and associated siliceous rocks from the northern Pacific:The geological significance and indication of ocean ridge activity[J].Sediment Geology,1986,47(1/2):125-148.
12 SUN S S, MC DONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society London Special Publication, 1989, 42: 313-345.
13 LI H B, ZHANG Z C, SANTOSH M, et al. Late Permian basalts in Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J].Journal of Asian Earth Sciences, 2017,134:293-308.
14 KORTE C, JASPER T, KOZUR H W, et al. 87Sr/86Sr record of Permian seawater[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 240(1):89-107.
15 黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997,71(1): 45-53.
HUANG S J.A study on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the Upper Yangtze Platform[J].Acta Geologica Sinica,1997,71(1):45-53.
16 张招崇,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志, 2001,20(3): 239-246.
ZHANG Z C,WANG F S,FAN W M,et al. A discussion on some problems concerning the study of the Emeishan Basalts[J].Acta Petrologica et Mineralogica, 2001,20(3): 239-246.
17 李大军,陈辉,陈洪德,等.四川盆地中二叠统茅口组储层形成与古构造演化关系[J].石油与天然气地质,2016,37(5):756-763.
LI D J,CHEN H,CHEN H D,et al. Relationship between reservoir development in the Middle Permian Maokou Formation and paleostructure evolution in the Sichuan Basin[J]. Oil & Gas Geology,2016, 37(5):756-763.
18 王英民, 童崇光, 徐国强, 等. 川中地区基底断裂的发育特征及成因机制[J]. 成都地质学院学报, 1991,18(3): 51-60.
WANG Y M,TONG C G,XU G Q,et al.On the characteristics and mechanism of basement faults in central Sichuan Basin[J].Journal of Chengdu College of Geology,1991,18(3): 51-60.
[1] Yi LIN, Cong CHEN, Shi-yu XU, Fan YANG, Yi-yang ZENG, Yang LI, Chun-ni ZHAO, Jing YANG, Kai-lai HE. Characteristics and formation mechanism of ultra-deep carbonate reservoirs in the Devonian Guanwushan Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 794-805.
[2] Xiang-ni Cao,Zhen-xue Jiang,De-yu Zhu,Heng-yuan Qiu,Lei Chen,Dong-dong Luo,Zi-jun Shuang,Wei-bang Li. Lithofacies types and reservoir characteristics of continental shales of Ziliujing Formation in northeastern Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(12): 1782-1793.
[3] Yu-qiang Jiang,Ya-dong Zhou,Zhi-yong Chen,Yi-fan Gu,Yong-hong Fu,Juan-zi Yi,Jie-wei Zhang,Zeng-zheng Jiang. Sedimentary pattern and exploration significance of Permian reefs and shoals in intra-platform depressions, eastern Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(11): 1539-1550.
[4] Zhang Dao-feng, Yao Jing-li, Gao Xing, Xi Ming-li, Zhao Hui-tao, Yan Xiao-xiong, Fu Xun-xun. Formation mechanism and distribution regularity of Ordovician Ma55 dolomite reservoir in Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(1): 74-82.
[5] Wang Shuai, Wang Gan-lu, Qin Zheng, Gao Ze-yuan, Luo Teng. Geochemical characteristics of rare earth elements in karst reservoirs in  Maokou Formation,northern Guizhou Province [J]. Natural Gas Geoscience, 2019, 30(1): 143-150.
[6] Jiang Yu-qiang, Gu Yi-fan, Xu Chang-hai, Zhang Jie-wei, Cheng Xiao-yan, Chen Hui. Feixianguan Formation lithofacies zoning and its geological significance of eastern side of Kaijiang-Liangping Trough,NE Sichuan Basin [J]. Natural Gas Geoscience, 2018, 29(8): 1067-1077.
[7] Zhou Bo, Cao Ying-hui, Qi Jing-shun, Huang Shi-wei, Liu Ce, Jia Jin-hua, Chen Xiu-yan. The development mechanism of Lower Ordovician reservoir in the Gucheng area,Tarim Basin,China [J]. Natural Gas Geoscience, 2018, 29(6): 773-783.
[8] . Main controlling factors and distribution of high quality reservoirs of deep buried dolomite in typical craton basins in China [J]. Natural Gas Geoscience, 2017, 28(8): 1165-1175.
[9] Su Yun-he,Li Xi-zhe,Wan Yu-jin,Zhang Lin,Liu Xiao-hua,Liu Hua-lin. Research on connectivity evaluation methods and application for dolomite reservoir with fracture-cave [J]. Natural Gas Geoscience, 2017, 28(8): 1219-1225.
[10] Huang Cheng-gang,Guan Xin,Ni Xiang-long,Chang Hai-yan,Zhang Shi-ming,Yang Sen. The characteristics and major factors controlling on the E23 dolomite reservoirs in saline lacustrine basin in the Yingxi area of Qaidam Basin [J]. Natural Gas Geoscience, 2017, 28(2): 219-231.
[11] Yang Zhen-heng,Wei Zhi-hong,He Wen-bin,Fan Ming,Yu Ling-jie,Xu Er-she,Qian Men-hui. Characteristics and significance of onsite gas desorptionfrom Wufeng-Longmaxi shales in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2017, 28(1): 156-163.
[12] Mei Qing-hua, He Deng-fa, Gui Bao-ling, Li Ying-qiang, Li Jiao, Li Chuan-xin. Multiple rifting and its evolution of central Sichuan Basin in the Neoproterozoic-Paleozoic [J]. Natural Gas Geoscience, 2016, 27(8): 1427-1438.
[13] Huang Qing-yu, Hu Su-yun, Pan Wen-qing, Liu Wei, Zhang Yan-qiu, Shi Shu-yuan, Wang Kun. Characteristics and controlling factors of the Cambrian carbonate reservoirs in Bachu area,Tarim Basin,NW China [J]. Natural Gas Geoscience, 2016, 27(6): 982-993.
[14] Liu Jin-ku, Sun Yong-liang, Jiao Xu, Zhang Ze . The genesis of low permeability of high-quality reservoirs in deep-buried clastic rock reservoirs and its development mechanism: A case study of Es2 Formation in the slope area of Qikou Sag [J]. Natural Gas Geoscience, 2016, 27(5): 799-808.
[15] Geng Yi-kai, Jin Zhen-kui, Zhao Jian-hua, Wen Xin, Chen Jun-nian, Du Wei. Composition and origin of clay minerals in the Lower Silurian Longmaxi Formation in eastern Sichuan Basin [J]. Natural Gas Geoscience, 2016, 27(10): 1933-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cao Cheng,Li Tian-tai,Wang Hui,Xu Xiao-qiang,Gao Chao. Research and application of shale permeability test method[J]. Natural Gas Geoscience, 2016, 27(3): 503 -512 .
[2] . 1[J]. Natural Gas Geoscience, 2021, 32(6): 2161 -2162 .
[3] Gang LIU, Jian-zhong LI, Xue-feng QI, Ming ZHU, Bo YUAN, Zhi-chao PANG. Reservoir formation process of the lower accumulation assemblage in the west part of the southern Junggar Basin: Case study of Well Dushan1 in the Dushanzi anticline[J]. Natural Gas Geoscience, 2021, 32(7): 1009 -1021 .
[4] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China[J]. Natural Gas Geoscience, 2021, 32(7): 1073 -1083 .
[5] Zhuo WEN, Yong-shang KANG, Liu-xu KANG, Jun LI, Qun ZHAO, Hong-yan WANG. Geological evaluation indexes and lowest limit standards for selection of shale gas industrial construction areas: Case study of X block in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(7): 950 -960 .
[6] Shi-ming LIU, Fu-rong TAN, Shu-heng TANG, Jin-xi WANG, Wei-chao WANG, Yong-hong LI. Restoration of “original organic carbon content” and its relationship with micropore evolution of the Middle Jurassic source rock in the Muli Depression, Southern Qilian Basin[J]. Natural Gas Geoscience, 2021, 32(7): 982 -992 .
[7] . 1[J]. Natural Gas Geoscience, 2021, 32(7): 2171 -2172 .
[8] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1093 -1106 .
[9] Linghui CAI, Ye YU, Jianhua GUO, Yanran HUANG, Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province[J]. Natural Gas Geoscience, 2021, 32(8): 1247 -1260 .
[10] . 1[J]. Natural Gas Geoscience, 2021, 32(8): 2181 -2182 .