Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (12): 1849-1858.doi: 10.11764/j.issn.1672-1926.2021.04.010

Previous Articles     Next Articles

Hydrocarbon generation kinetics and in-situ conversion temperature conditions of Chang 7 Member shale in Ordos Basin

Ziyun ZHANG(),Lianhua HOU,Xia LUO,Kun HE,Yan ZHANG   

  1. Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2021-03-02 Revised:2021-04-15 Online:2021-12-10 Published:2021-12-27
  • Supported by:
    The Projects of China National Petroleum Corporation(2021DJ5202)

Key words: In-situ conversion, Shale oil, Hydrocarbon generation kinetics, Activation energy, Maturity, Chang 7 Member, Ordos Basin

CLC Number: 

  • TE121

Table 1

Geochemical characteristics of natural shale and artificial simulated samples of Chang 7 Member in Ordos Basin"

样品编号深度/mRO/%TOC/%S1/(mg/g)S2/(mg/g)Tmax/℃IH/ (mg/gTOCH/C 原子比O/C 原子比
Z-021 384.830.569.143.2940.314374411.100.09
L-021 585.150.839.544.9133.684393531.010.08
C-021 969.381.099.582.8423.294432430.920.06
HJF-2

人工模拟

样品

0.5326.81.33130.064434851.230.13
HJF-50.7324.791.8794.864453831.060.12
HJF-61.0922.11.6150.674642291.030.10

Fig.1

Organic matter type diagram of natural and artificial simulated samples"

Table 2

Kinetic parameters of natural and artificial maturaion shale samples"

样品编号Z-02L-02C-02HJF-2HJF-5HJF-6
频率因子/(1010 s-15.475.004.970.5090.4501.09
活化能/(kcal/mol)质量分数/%
380.310.33
390.150.270.22
400.610.280.950.25
410.81.040.410.14
420.111.620.59
432.021.710.36
440.712.340.90
451.2579.1275.122.14
466.907.7823.97
479.419.2039.49
489.5912.35
4983.7963.9556.412.41
505.510.441.670.29
516.3915.6420.071.321.283.09
523.513.830.48
530.150.641.842.99
541.991.140.380.66
550.21.140.531.112.62
560.580.860.751.001.05
570.460.621.82.08
581.020.540.70
591.74
600.530.99
611.052.172.44
621.71

Fig.2

Temperature-transformation ratio relationship diagram of low-mature sample under experimental conditions"

Fig.3

Activation energy distribution map of low maturity sample"

Fig.4

Hydrocarbon generation potential of pyrolytic samples with different maturity at 10 ℃/min heating rate"

Fig.5

Activation energy distribution of natural and artificial simulated samples at different maturities"

Fig.6

Trend of average activation energies with the increase of maturity"

Fig.7

Changes in the proportion of activation energy groups at different maturation stages"

Fig.8

Temperature-conversion(a) and temperature-hydrocarbon generation(b) potential curves of natural samples with different maturity under in-situ conversion condition"

Table 3

Temperature required for each activation energy group of different maturity samples on fixed conversion"

样品编号RO/%达到固定转化率所需温度/℃

低活化能组

E<47 kcal/mol

主峰活化能组

47 kcal/mol≤E≤52 kcal/mol

高活化能组

E>52 kcal/mol

10%转化50%转化90%转化10%转化50%转化90%转化10%转化50%转化90%转化
Z-020.56225264294330360381426468522
L-020.83243276297333360387417459513
C-021.09234279312336366393414462522
1 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景 [J]. 中国石油勘探, 2019, 24(5): 560-568.
DU J H, HU S Y,PANG Z L, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
2 CONNAN J. Time-temperature relation in oil genesis: Geologic notes [J]. AAPG Bulletin, 1974, 58(12): 2516-2521.
3 TISSOT B P. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation [J]. AAPG Bulletin, 1987, 71(12):1445-1466.
4 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence [M]. Heidelberg: Springer,1984.
5 UNGERER P, PELET R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins [J]. Nature, 1987, 327(6117): 52-54.
6 SHEN C. Reservoir Simulation Study of An In-situ Conversion Pilot of Green-River Oil Shale[C]. Colorado: SPE Rocky Mountain Petroleum Technology, 2009.
7 杨智, 邹才能, 付金华, 等. 基于原位转化/改质技术的陆相页岩选区评价——以鄂尔多斯盆地三叠系延长组7段页岩为例[J]. 深圳大学学报(理工版), 2017, 34(3): 221-228. YANG Z, ZOU C N, FU J H, et al. Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: A case study of Yanchang-7 member in Ordos Basin[J]. Journal of Shenzhen University (Science & Engineering), 2017, 34(3): 221-228.
8 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545.
ZHAO W Z, HU S Y, HOU L H. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545.
9 崔景伟, 朱如凯, 侯连华, 等. 页岩原位改质技术现状、挑战和机遇 [J]. 非常规油气, 2018, 5(6): 103-114.
CUI J W, ZHU R K, HOU L H, et al. Shale in-situ mining technology status quo of challenges and opportunities[J]. Unconventional Oil & Gas, 2018, 5(6): 103-114.
10 王香增, 高潮. 鄂尔多斯盆地南部长7陆相泥页岩生烃过程研究 [J]. 非常规油气, 2014, 1(1): 2-11.
WANG X Z, GAO C. The hydrocarbon generation process of the Mesozoic Chang 7 lacustrine shale in south of Ordos Basin[J]. Unconventional Oil & Gas, 2014, 1(1): 2-11.
11 廖玲玲. 基于全岩的不同类型烃源岩生—留—排烃的实验模拟与应用研究[D]. 广州:中国科学院研究生院(广州地球化学研究所), 2016.
LIAO L L. Whole-rock Based Experimental Study on Hydrocarbon Generation, Retention and Expulsion from Different Source Rocks and Geological Application[D]. Guangzhou:Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry),2016.
12 HAN S, HORSFIELD B, ZHANG J, et al. Hydrocarbon generation kinetics of lacustrine Yanchang shale in southeast Ordos Basin,North China[J]. Energy & Fuels, 2014, 28(9): 5632-5639.
13 黄彩霞, 张枝焕, 李宇翔, 等. 鄂尔多斯盆地南部地区延长组烃源岩生烃动力学研究及模拟结果分析 [J]. 石油天然气学报, 2013, 35(8): 21-27,5.
HUANG C X, ZHANG Z H, LI Y X, et al. Hydrocarbon generation kinetics and simulation result analysis of source rocks in Yanchang Formation of the southern Ordos Basin[J]. Journal of Petroleum and Natural Gas, 2013, 35(8): 21-27,5.
14 齐玉林, 张枝焕, 夏东领, 等. 鄂尔多斯盆地南部长7暗色泥岩与黑色页岩生烃动力学特征对比分析 [J]. 现代地质, 2019, 33(4): 863-871.
QI Y L, ZHANG Z H, XIA D L, et al. Comparative analysis of hydrocarbon generation kinetics of dark shale and black shale of Chang 7 in southern Ordos Basin[J]. Geoscience, 2019, 33(4): 863-871.
15 WELLINGTON S L, BERCHENKO I E, DE ROUFFIGNAC E P, et al. In Situ Thermal Processing of An Oil Shale Formation to Produce a Desired Product:US2003136558[P].2005-04-19.
16 FAN Y, DURLOFSKY L J, TCHELEPI H A. Numerical simulation of the in-situ upgrading of oil shale[J]. SPE Journal, 2010, 15(2): 368-381.
17 李志明, 陶国亮, 黎茂稳, 等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨 [J]. 石油与天然气地质, 2019, 40(3): 558-570.
LI Z M, TAO G L, LI M W, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 Member in Binchang block, southwestern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 558-570.
18 杨亚南, 周世新, 李靖, 等. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比 [J]. 天然气地球科学, 2017, 28(4): 550-565.
YANG Y N, ZHOU Z X, LI J, et al. Geochemical characteristics of source rocks and oil-source correlation of Yanchang Formation in southern Ordos Basin, China[J]. Natural Gas Geoscience, 2017, 28(4): 550-565.
19 杨华, 张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征 [J]. 地球化学, 2005, 34(2): 147-154.
YANG H, ZHANG W Z. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation[J].Geochimica, 2005, 34(2): 147-154.
20 MA W, HOU L, LUO X, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis: Implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190:107035.
21 ARRHENIUS S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren[J].Zeitschrift für phy-sikalische Chemie, 1889, 4(1): 226-248.
22 COATS A W, REDFERN J. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4914): 68-69.
23 DIECKMANN V. Modelling petroleum formation from heterogeneous source rocks: The influence of frequency factors on activation energy distribution and geological prediction[J]. Marine and Petroleum Geology, 2005, 22(3): 375-390.
24 SHIH S M, SOHN H. Nonisothermal determination of the intrinsic kinetics of oil generation from oil shale[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3): 420-426.
25 PITT B M. Oxidation of phenylpyruvates to aromatic aldehydes and oxalate[J]. Nature, 1962, 196(4851): 272-273.
26 QUIGLEY T, MACKENZIE A. The temperatures of oil and gas formation in the sub-surface[J]. Nature,1988,333(6173): 549-552.
27 卢双舫, 付晓泰, 陈昕, 等. 原油族组分成气的化学动力学模型及其标定 [J]. 地质学报, 1997, 71(4): 367-373.
LU S F, FU X T, CHEN X, et al. Chemical kinetic models of generation of gas by various groups in crude oil and their calibration[J]. Acta Geologica Sinica, 1997, 71(4): 367-373.
28 王民, 卢双舫, 董奇, 等. 有机质生烃动力学模型对比 [J]. 中国石油大学学报(自然科学版), 2011, 35(3): 12-18.
WANG M,LU S F,DONG Q,et al. Comparison on hydrocarbon generation kinetic models[J]. Journal of China University of Petroleum(Edition of Natural Science),2011,35(3): 12-18.
29 LAKSHMANAN C, BENNETT M, WHITE N. Implications of multiplicity in kinetic parameters to petroleum exploration:Distributed activation energy models[J].Energy & Fuels, 1991, 5(1): 110-117.
30 BEHAR F, LORANT F, LEWAN M. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite[J]. Organic Geochemistry,2008,39(1):1-22.
31 BURNHAM A K. Global Chemical Kinetics of Fossil Fuels [M]. Heidelberg: Springer,2017.
32 张斌, 于聪, 崔景伟, 等. 生烃动力学模拟在页岩油原位转化中的应用 [J]. 石油勘探与开发, 2019, 46(6): 1212-1219.
ZHANG B, YU C, CUI J W, et al. Kinetic simulation of hydrocarbon generation and its application to in-situ conversion of shale oil[J]. Petroleum Exploration and Development, 2019, 46(6): 1212-1219.
33 MA Y, CAO T, SNOWDON L, et al. Impact of different experimental heating rates on calculated hydrocarbon generation kinetics[J]. Energy & Fuels, 2017, 31(10): 10378-10392.
34 HE K, ZHANG S, MI J, et al. The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis[J]. Fuel, 2018, 211:492-506.
35 沈忠民, 陈义才, 罗小平, 等. 源岩活化能分布最小值与有机质成熟度的关系[J]. 成都理工大学学报(自然科学版), 2004, 31(6): 723-725.
SHEN Z M, CHEN Y C, LUO X P, et al. Relationship of least distribution values of activation energy of source rocks and organic matter maturity[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2004,31(6): 723-725.
36 卢双舫, 钟宁宁, 薛海涛, 等. 碳酸盐岩有机质二次生烃的化学动力学研究及其意义 [J]. 中国科学(D辑), 2007, 37(2): 178-184.
LU S F, ZHONG N N, XUE H T, et al. Study on chemical kinetics of secondary hydrocarbon generation from organic matter in carbonate rocks and its significance[J]. Science in China (Series D), 2007, 37(2): 178-184.
37 黎琼, 张枝焕, 欧光习, 等. 黄桥地区烃源岩有机质的化学动力学研究 [J]. 中国矿业, 2014, 23(6): 92-95.
LI Q, ZHANG Z H, OU G X, et al. Chemical kinetics study on organic matter in source rocks in Huangqiao area[J]. China Mining, 2014, 23(6): 92-95.
38 ROMERO-SARMIENTO M-F, EUZEN T, ROHAIS S, et al. Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig formations in the Western Canada Sedimentary Basin [J]. Organic Geochemistry, 2016, 97:148-162.
39 ROMERO-SARMIENTO M-F, ROHAIS S, LITTKE R. Lacustrine Type I kerogen characterization at different thermal maturity levels: Application to the Late Cretaceous Yacoraite Formation in the Salta Basin-Argentina[J]. International Journal of Coal Geology, 2019, 203:15-27.
40 KANG Z, ZHAO Y, YANG D. Review of oil shale in-situ conversion technology[J]. Applied Energy,2020,269:115121.
[1] Junlin CHEN, Peng WANG, Yuanyuan GAO, Kai LI, Ming YANG, Jiaqiang ZHANG, Jiacheng LI, Shutong LI. Application of multiple stepwise regression method in the analysis of the relationship between porosity and tight sandstone: Case study of Chang 8 reservoir in Jiyuan area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1372-1383.
[2] Xiaoqi WU, Yingbin CHEN, Yanqing WANG, Huasheng ZENG, Xiaoqiong JIANG, Ye HU. Geochemical characteristics of natural gas in tight sandstone of the Chengdu large gas field, Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1107-1116.
[3] Wanchun WANG, Liming JI, Dongjun SONG, Dongwei ZHANG, Chengfu LÜ, Long SU. Residual oil from pyrolysis experiments of different sandstone/oil shale ratios and its geological significance: Case study of the Upper Triassic Chang 7 Member of the Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1142-1150.
[4] Xianyang LIU, Shixiang LI, Qiheng GUO, Xinping ZHOU, Jiangyan LIU. Characteristics of rock types and exploration significance of the shale strata in the Chang 73 sub-member of Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1177-1189.
[5] Shengli XI, Wuling MO, Xinshe LIU, Lei ZHANG, Jian LI, Zhengliang HUANG, Min WANG, Chunlin ZHANG, Qiuying ZHU, Yu YAN, Nengwu ZHOU. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1 [J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
[6] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[7] Ya-hui LIU, Cai-zhi WANG, Zhong-hua LIU, Hao WANG, Ying-ming LIU. A logging method for evaluating oil-bearing property of Jimsar shale oil: Case study of Sag in Junggar Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1084-1092.
[8] Zhou YU, Jin-gao ZHOU, Cheng-shan LI, Xiao-jiao SONG, Chao LUO, Xing-ning WU, Dong-xu WU, Cong HU. Tectonic-lithofacies paleogeographic characteristics of Ordovician Kelimoli and Wulalike stages in the western edge of Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 816-825.
[9] Xuan-hao GUO, Cheng-qian TAN, Jun-hui ZHAO, Xin ZHAO, Jin WANG. Different influence of diagenesis on micro pore-throat characteristics of tight sandstone reservoirs: Case study of the Triassic Chang 7 member in Jiyuan and Zhenbei areas, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 826-835.
[10] Fang-zheng JIAO. Theoretical technologies and practices concerning “volume development” of low pressure continental shale oil: Case study of shale oil in Chang 7 member, Ordos Basin, China [J]. Natural Gas Geoscience, 2021, 32(6): 836-844.
[11] Bing-kun MENG, Shi-xin ZHOU, Jing LI, Ke-fei CHEN, Chen ZHANG, Peng-Peng LI, Ze-xiang SUN. Distribution characteristics and significance of the aromatic hydrocarbons molecular biomarker in crude oil from the northwestern Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(5): 738-753.
[12] Cheng CHEN, Yu QI, Zi-liang YU, Bo WANG. Seismic identification of superposition relationship of the shallow water delta channel sand bodies: Case study of Linxing S area in eastern Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(5): 772-780.
[13] Hua WANG, Yue-hua CUI, Xue-ling LIU, Zhen-zhen QIANG, Shi-cheng WANG. Multi-layer horizontal wells development for tight sandstone gas reservoir: Case study of tight gas reservoir model zone in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(4): 472-480.
[14] Guo-yi HU, Fei HE, Jing-kui MI, Yi-lin YUAN, Jin-hao GUO. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 319-333.
[15] Gui-zhen LIU, Wei GAO, Jia-sheng WEI, Wen TANG. Sedimentary characteristics and sequence stratigraphy in a mixed silicilastic-carbonate depositional system: Case study of Benxi Formation in Gaoqiao area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(3): 382-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Guang-zhi, HU Bin, DENG Tian-long,YUAN Zi-yan . Petroleum Geological Significance of Microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13 -17 .
[2] ZHANG Rong-hu ;ZHANG Hui-liang ;MA Yu-jie ;SHEN Yang ;LI Chang ;ZHANG Li-juan . Origin of Extra Low Porosity and Permeability High Production Reseroirs: A Case from Bashijiqike Reservoir of Dabei 1 Oil Field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75 -82 .
[3] WEI Li-hua, GUO Jing-yi, YANG Zhan-long, HUANG Yun-feng. ANALYSIS ON KEY TECHNIQUES OF LOG CONSTRAINEDLITHOLOGICAL INVERSION[J]. Natural Gas Geoscience, 2006, 17(5): 731 -735 .
[4] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[5] . STUDY ON PRODUCING ABILITY OF RESERVOIRS AND INFLUENCE FACTORS IN HETEROGENEOUS[J]. Natural Gas Geoscience, 2005, 16(1): 93 -97 .
[6] . THE STUDY OF GEOLOGY COURSE AND EXPERIMENT SIMULATION FORFORMING ULTRA-LOW WATER SATURATION IN TIGHTSANDSTONES GAS RESERVOIRS[J]. Natural Gas Geoscience, 2005, 16(2): 186 -189 .
[7] . PROSPECT ANALYSIS OF COALBED GAS EXPLORATION ON CANGXIAN UPLIFT IN DAGANG FIELDS[J]. Natural Gas Geoscience, 2003, 14(4): 323 -326 .
[8] ZHAO Jing-zhou. ON EPISODIC MIGRATION AND ACCUMULATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2005, 16(4): 469 -476 .
[9] . PREDICTION OF DEEP COALBED METHANE CONTENTS IN HUIMIN DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(6): 764 -767 .
[10] MU Ya-peng,; WANG Wan-chun ;SONG Zhen- xiang,. Present Researches and Prospects of the Evaluation Indicator of Biogenic Gas Source Rocks[J]. Natural Gas Geoscience, 2008, 19(06): 775 -779 .