Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (9): 1270-1284.doi: 10.11764/j.issn.1672-1926.2021.04.005

Previous Articles     Next Articles

Genesis and energy significance of hydrogen in natural gas

Shuangbiao HAN1(),Zhiyuan TANG1,Chunlong YANG2,Linfeng XIE1,Chaohan XIANG1,Brian HORSFIELD3,Chengshan WANG4   

  1. 1.College of Geoscience and Surveying Engineering,China University of Mining and Technology,Beijing 100083,China
    2.PetroChina Research Institute of Petroleum Exploration & Development,Langfang 065007,China
    3.German Research Centre for Geosciences,Potsdam,Brandenburg 14473,Germany
    4.State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Beijing 100083,China
  • Received:2021-01-28 Revised:2021-03-31 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    The National Natural Science Foundation of China(42072168);the National Key Research and Development Program of China(2019YFC0605405);the Fundamental Research Funds for the Central Universities(2021YQDC04)

Abstract:

For a long time, with the continuous expansion of the oil and gas genesis theory and the increasing global demand for clean energy, hydrogen, as an important link connecting the theory of inorganic and organic hydrocarbon generation, as well as a promising clean energy, has gradually attracted widespread academic attention. The genesis of hydrogen in natural gas is relatively complex and diverse. According to its reaction mechanism, it can be divided into two categories: inorganic and organic. Inorganic genesis is mainly earth degassing, water rock reaction and water radiation decomposition, while organic genesis is dominated by biological action and organic matter pyrolysis. At present, hydrogen isotope and geochemical characteristics of associated gases are mainly used to identify the origin of hydrogen. However, due to the complex and diverse sources of hydrogen and its active chemical properties, it is still unable to identify the origin of hydrogen systematically and accurately. Due to the extensive genesis of hydrogen, natural gas with different hydrogen concentrations has been found in different geological conditions around the world, and the hydrogen content varies greatly (0.1%-99%). Hydrogen can participate in hydrocarbon generation in Fischer Tropsch synthesis as a reducing agent, and also can be used as a hydrogen source to improve the hydrocarbon yield during the thermal evolution of organic matter. Therefore, the existence of hydrogen may extend the lower limit of deep gas exploration and development. Based on the systematic summary of the genetic mechanism and distribution of hydrogen, this paper discusses the energy significance of hydrogen in natural gas, and provides a reference for the future research on hydrogen rich natural gas resources.

Key words: Natural gas, Hydrogen, Genetic type, Distribution law, Energy significance

CLC Number: 

  • TE122.1+1

Fig. 1

Hydrogen release curve of different rocks under different conditions (modified after FREUND et al. [29] ,2002)"

Fig.2

The nitrogen-hydrogen-methane ternary diagram of natural gas in different regions of the world"

Fig.3

Identification of composition characteristics of hy-drogen with different origin(modified after MENG[75],2017)"

Fig.4

Conceptual model of H2 and CH4 formation in olivine fluid inclusions(modified after KLEIN et al.[20] ,2019)"

Fig.5

Hydrogen generation and consumption reactions during the thermal evolution of organic matter (modified after POETA et al.[78],2014)"

1 张海龙. 中国新能源发展研究[D]. 长春: 吉林大学, 2014.
ZHANG H L. Research on The Development of New Energy in China[D]. Changchun: Jilin University, 2014.
2 IEA. The Future of Hydrogen: Seizing Today’s Opportunities[R]. Osaka, Japan: International Energy Agency, 2019:3.
3 张博, 万宏, 徐可忠, 等. 世界各国氢能源经济发展举措分析[J]. 国际石油经济, 2017, 25(9): 65-70.
ZHANG B, WAN H, XU K Z, et al. Hydrogen energy economy development in various countries[J]. International Petroleum Economy, 2017, 25(9): 65-70.
4 徐永昌, 沈平, 刘文汇, 等. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994: 277-341.
XU Y C, SHEN P, LIU W H, et al. Natural Gas Genesis Theory and its Application[M]. Beijing:Science Press, 1994: 277-341.
5 上官志冠, 霍卫国. 腾冲热海地热区逸出H2的δD值及其成因[J]. 科学通报, 2001, 46(15): 1316-1320.
SHANGGUAN Z G, HUO W G. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin.[J].Chinese Science Bulletin, 2001, 46(15): 1316-1320.
6 上官志冠, 白春华, 孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学:D辑,地球科学, 2000, 30(4): 407-414.
SHANGGUAN Z G, BAI C H, SUN M L. Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong County, Yunnan Province, China[J]. Science in China: Series D,Earth Sciences,2000, 30(4): 407-414.
7 陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学: D辑,地球科学, 2005, 35(5): 441-451.
TAO M X, XU Y C, SHI B G, et al. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China[J]. Science in China: Series D,Earth Science, 2005, 35(5): 441-451.
8 胡文瑄. 盆地深部流体主要来源及判识标志研究[J]. 矿物岩石地球化学通报, 2016, 35(5): 817-826,806.
HU W X. Origin and indicators of deep-seated fluids in sedimentary basins[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016, 35(5): 817-826,806.
9 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学:地球科学, 2019, 49(3): 499-520.
LIU Q Y, ZHU D Y, MENG Q Q, et al. The scientific connotation of oil and gas formations under deep fluids and organicinorganic interaction[J]. Science in China: Earth Sciences, 2019, 49(3): 499-520.
10 GUÉLARD J, BEAUMONT V, ROUCHON V, et al. Natural H2 in Kansas: Deep or shallow origin[J]. Geochemistry Geophysics Geosystems, 2017, 18(5):1-25.
11 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007: 1-150.
JIN Z J, HU W X, ZHANG L P, et al. Deep-Derived Fluid and its Effect on Hydrocarbon Accumulation[M]. Beijing: Science Press, 2007: 1-150.
12 PRINZHOFER A, TAHARA CISSE C S, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326.
13 GOEBEL E, COVENEY R J, ANGINO E, et al. Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kans[J]. Oil and Gas Journal, 1984, 82: 215-222.
14 LARIN N, ZGONNIK V, RODINA S, et al. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the european craton in Russia[J]. Natural Resources Research, 2014, 24(3): 369-383.
15 ZGONNIK V, BEAUMONT V, DEVILLE E, et al. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)[J]. Progress in Earth & Planetary Science, 2015, 2(1): 31.
16 MYAGKIY A, MORETTI I, BRUNET F. Space and time distribution of subsurface H2 concentration in so-called "fairy circles": Insight from a conceptual 2-D transport model[J]. Bulletin de la Société Géologique de France,2020,191(1-3):13.
17 丁抗. 水岩作用的地球化学动力学[J]. 地质地球化学, 1989, 17(6): 29-38.
DING K. Geochemical dynamics of water-rock interaction[J]. Geology-Geochemistry, 1989, 17(6): 29-38.
18 丁兴,刘志锋,黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究:跨学科视野中的工程, 2016,8(3): 258-268.
DING X, LIU Z F, HUANG R F, et al. Water-rock interaction in oceanic subduction zone:Serpentinization[J]. Journal of Engineering Studies, 2016,8(3): 258-268.
19 COVENEY R M J, GOEBEL E D, ZELLER E J, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin, 1987, 71(1): 39-48.
20 KLEIN F, GROZEVA N G, SEEWALD J S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions[J]. Proceedings of the National Academy of Sciences, 2019, 116 (36): 17666-17672.
21 张明峰, 王先彬, 妥进才, 等. 蛇纹石化作用的气体形成研究进展[J]. 地球科学与环境学报, 2016, 38(1): 11-20.
ZHANG M F, WANG X B, TUO J C, et al. Review on gas formation of serpentinization[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 11-20.
22 DEVILLE E, PRINZHOFER A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia[J]. Chemical Geology, 2016,440: 139-147.
23 NEAL C, STANGER G. Hydrogen generation from mantle source rocks in Oman[J]. Earth amd Planetary Seoemce Letters, 1983, 66: 315-320.
24 GREGORY S, BARNETT M, FIELD L, et al. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry[J]. Microorganisms, 2019, 7(2): 53.
25 POTTER J, SALVI S, LONGSTAFFE F J. Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation[J]. Lithos,2013,182-183: 114-124.
26 SALVI S, WILLIAMS-JONES A E. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 83-99.
27 NEWELL K D, DOVETON J H, MERRIAM D F, et al. H2-rich and hydrocarbon gas recovered in a deep precambrian well in northeastern Kansas[J]. Natural Resources Research,2007,16(3): 277-292.
28 KITA I, MATSUO S. H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone[J]. Journal of Geophysical Research,1982, 87(B13): 10789-10795.
29 FREUND F, DICKINSON J T, CASH M. Hydrogen in rocks: An energy source for deep microbial communities[J]. Astrobiology, 2002, 2(1): 83-92.
30 KLEIN F, TARNAS J D, BACH W. Abiotic sources of molecular hydrogen on earth[J]. Elements, 2020, 16(1): 19-24.
31 王文青. 烃源岩系辐射生氢模拟实验及其油气地质意义[D]. 西安:西北大学, 2019: 30-50.
WANG W Q. Simulation Experiment of Radiation Hydrogen Generation in Source Rock System and its Geological Significance[D]. Xi'an: Northwest University, 2019: 30-50.
32 CHUPIN F, DANNOUX-PAPIN A, RAVACHE Y N, et al. Water content and porosity effect on hydrogen radiolytic yields of geopolymers[J]. Journal of Nuclear Materials, 2017, 494: 138-146.
33 LIN L H, HALL J, LIPPMANN‐PIPKE J, et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): 1-13.
34 TÜRKE A, NAKAMURA K, BACH W. Palagonitization of basalt glass in the flanks of mid-ocean ridges: Implications for the bioenergetics of oceanic intracrustal ecosystems[J]. Astrobiology, 2015, 15(10): 793-803.
35 DZAUGIS M E, SPIVACK A J, DUNLEA A G, et al. Radiolytic hydrogen production in the subseafloor basaltic aquifer[J]. Frontiers in Microbiology, 2016, 7: 76.
36 JOHN P, NIGEL B. Hydrogen from radiolysis of aqueous fluid inclusions during diagenesis[J]. Minerals,2017,7(8):130.
37 TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca[J]. Earth and Planetary Sciences Letters, 2018, 493: 186-197.
38 LOLLAR B S, ONSTOTT T C, LACRAMPE-COULOUME G, et al. The contribution of the Precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516(7531): 379-82.
39 WORMAN S L,PRATSON L F,KARSON J A. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere[J]. Geophysical Research Letters, 2016, 43(12): 6435-6443.
40 PICHÉ-CHOQUETTE S, CONSTANT P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes[J]. Applied and Environmental Microbiology, 2019,85(6): e02418-18.
41 ARMSTRONG F A, ALBRACHT S P J. [NiFe]-hydrogenases: Spectroscopic and electrochemical definition of reactions and intermediates[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1829): 937-954.
42 YAGI T, YAMASHITA K, OKADA N, et al. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii sustainable over 2 weeks with the original cell culture without supply of fresh cells nor exchange of the whole culture medium[J]. Journal of Plant Research, 2016, 129: 771-779.
43 CONSTANT P, HALLENBECK P C. Hydrogenase[J]. Biohydrogen, 2013: 75-102.
44 BURRIS R H. Nitrogenases[J]. Journal of Biological Chemistry, 1991, 266(15): 9339-9342.
45 POSTGATE J R. The nitrogen cycle || biology nitrogen fixation: Fundamentals[J]. Philosophical Transactions of the Royal Society of London:Series B,Biological Sciences,1982,296(1082): 375-385.
46 HUNT S, GAITO S T, LAYZELL D B. Model of gas exchange and diffusion in legume nodules - II. Characterisation of the diffusion barrier and estimation of the concentrations of CO2, H2 and N2 in the infected cells[J]. Planta, 1988, 173(1): 128-141.
47 CONRAD R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J]. Fems Microbiology Ecology,1999,28(3): 193-202.
48 ZIEGS V, NOAH M, POETZ S, et al. Unravelling maturity- and migration-related carbazole and phenol distributions in central Graben crude oils[J]. Marine and Petroleum Geology, 2018, 94: 114-130.
49 王晓锋, 刘文汇, 徐永昌, 等. 水介质对气态烃形成演化过程氢同位素组成的影响[J]. 中国科学:地球科学,2012,42(1): 103-110.
WANG X F, LIU W H, XU Y C, et al. Effect of water medium on hydrogen isotope composition of gaseous hydrocarbon formation and evolution[J]. Science China: Earth Sciences. 2012, 42(1): 103-110.
50 钟宁宁, HERWOOD N, WILKINS R W T. 显微组分激光诱导荧光特性与其富氢程度关系的初步研究[J]. 科学通报, 2000, 45(3): 323-328.
ZHONG N N, SHERWOOD N, WILKINS R W T. Laser-induced fluorescence of macerals in relation to its hydrogen richness[J]. Science Bulletin, 2000, 45(3): 323-328.
51 熊永强, 耿安松, 潘长春, 等. 陆相有机质中单体烃的氢同位素组成特征[J]. 石油勘探与开发, 2004, 31(1): 60-63.
XIONG Y Q, GENG A S, PAN C C, et al. Hydrogen isotopic compositions of individual n-alkanes in terrestrial source rocks[J]. Petroleum Exploration and Development, 2004, 31(1): 60-63.
52 周志玲. 低煤阶煤及不同化学组分热解甲烷和氢气的生成特征与机理[D]. 太原:太原理工大学, 2010.
ZHOU Z L. Evolution Kinetics and Mechanisms of Methane and Hydrogen from Low Rank Coal and Different Chemical Components[D]. Taiyuan:Taiyuan University of Technology, 2010.
53 LI X Q, KROOSS B M, WENIGER P, et al. Liberation of molecular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals: Systematics and quantification[J]. International Journal of Coal Geology, 2015, 137: 152-164.
54 LI X Q, KROOSS B M, WENIGER P, et al. Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments[J]. Journal of Analytical & Applied Pyrolysis, 2017, 126: 275-287.
55 PATIENCE R L, MANN A L, POPLETT I J F. Determination of molecular structure of kerogens using 13C NMR spectroscopy: II. The effects of thermal maturation on kerogens from marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2725-2742.
56 LEWAN M D, STÉPHANIE ROY. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J].Organic Geochemistry,2012, 42(1): 31-41.
57 秦胜飞,周国晓.气田水对甲烷氢同位素分馏作[J]. 天然气地球科学, 2018,29(3): 311-316.
QIN S F, ZHOU G X. The effect of gas field water on hydrogen isotope fractionation of methane[J]. Natural Gas Geoscience, 2018, 29(3): 311-316.
58 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
59 SEEWALD J S, BENITEZNELSON B C, WHELAN J K. Laboratory and theoretical constraints on the generation and composition of natural gas[J]. Geochimica et Cosmochimica Acta, 1998, 62(9): 1599-1617.
60 DERYAGIN B V , FEDOSAYEV D V . The growth of diamond and graphite from the gas phase[J]. Surface and Coatings Technology, 1989, 38(1-2): 131-248.
61 SUZUKI N, SAITO H, HOSHINO T. Hydrogen gas of organic origin in shales and metapelites[J]. International Journal of Coal Geology, 2017, 173: 227-236.
62 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216.
MENG Q Q, JIN Z J, SUN D S, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J].Petroleum Geology & Experiment,2021, 43(2): 208-216.
63 SATO M, SUTTON A J, MCGEE K A, et al. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B12): 12315-12326.
64 WAKITA H, NAKAMURA Y, KITA I, et al. Hydrogen release: New indicator of fault activity[J]. Science, 1980, 210(4466): 188-190.
65 SATAKE H, OHASHI M, HAYASHI Y. Discharge of H2 from the Atotsugawa and Ushikubi Faults, Japan, and its relation to earthquakes[J]. Pure and Applied Geophysics, 1984, 122(2): 185-193.
66 VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta Journal of the Geochemical Society & the Meteoritical Society, 2018.
67 HOSGÖRMEZ H. Origin of the natural gas seep of irali (Chimera), Turkey: Site of the first Olympic fire[J]. Journal of Asian Earth ences, 2007, 30(1): 131-141.
68 NIVIN V A. Free hydrogen-hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NW Russia)[J]. Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry, 2016, 74:44-55.
69 帅燕华, 张水昌, 苏爱国, 等. 柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据[J]. 中国科学:D辑,地球科学,2009, 39(6): 734-740.
SHUAI Y H, ZHANG S C, SU A G, et al. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science in China:Series D,Earth Sciences,2009, 39(6): 734-740.
70 孟庆强, 金之钧, 刘文汇, 等. 天然气中伴生氢气的资源意义及其分布[J]. 石油实验地质, 2014, 36(6): 712-717,724.
MENG Q Q, JIN Z J, LIU W H, et al. Distribution and genesis of hydrogen gas in natural gas[J]. Petroleum Geology & Experiment, 2014, 36(6): 712-717,724.
71 杨玉峰,张秋,黄海平,等. 松辽盆地徐家围子断陷无机成因天然气及其成藏模式[J]. 地学前缘, 2000,7(4): 523-533.
YANG Y F, ZHANG Q, HUANG H P, et al. Abiogenic natural gases and their accumulation model in Xujiaweizi area, Songliao Basin, northeast China[J]. Earth Science Frontier, 2000,7(4): 523-533.
72 MENG Q Q, SUN Y H, TONG J Y, et al. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, eastern China[J]. Acta Geologica Sinica:English Edition, 2015, 89(5): 1616-1624.
73 徐永昌, 刘文汇, 沈平,等. 天然气地球化学的重要分支——稀有气体地球化学[J]. 天然气地球科学, 2003, 41(3):1970-1972.
XU Y C, LIU W H, SHEN P, et al. An important branch of gas geochemistry: Noble gas geochemistry[J]. Natural Gas Geoscience, 2003, 41(3):1970-1972.
74 刘全有, 金之钧, 张殿伟, 等. 塔里木盆地天然气地球化学特征与成因类型研究[J]. 天然气地球科学, 2008, 19(2): 234-237.
LIU Q Y, JIN Z J, ZHANG D W, et al. Geochemical characteristics and genesis of natural gas in Tarim Basin[J]. Natural Gas Geoscience, 2008, 19(2): 234-237.
75 孟庆强. 济阳坳陷天然气中氢气的地球化学特征及其油气地质意义[C]. 北京:第七届中国石油地质年会, 2017.
MENG Q Q. Geochemical Characteristics and Petroleum Geological Significance of Hydrogen in Natural Gas from the Jiyang Depression[C]. Beijing: Special Edition of the 7th China Petroleum Geology Annual Conference, 2017.
76 戴金星, 石昕, 卫延召. 无机成因油气论和无机成因的气田(藏)概略[J]. 石油学报, 2001, 22(6): 5-10.
DAI J X, SHI X, WEI Y Z. Summary of the abiogenic origin theory and the abiogenic gas pools(fields)[J]. Acta Petrolei Sinica, 2001, 22(6): 5-10.
77 戴金星, 邹才能, 张水昌, 等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学: D辑, 地球科学, 2008, 38(11): 1329-1341.
DAI J X, ZOU C N, ZHANG S C, et al. Discrimination of abiogenic and biogenic alkane gases[J]. Science in China: Series D,Earth Sciences, 2008, 38(11): 1329-1341.
78 POETZ S, HORSFIELD B, WILKES H. Maturity-driven generation and transformation of acidic compounds in the organic-rich posidonia shale as revealed by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2014, 28(8): 4877-4888.
79 高岗, 柳广弟. 湖相烃源岩混合型母质成烃演化特征热模拟研究[J]. 矿物岩石地球化学通报, 2010, 29(3): 233-237.
GAO G, LIU G D. Simulation study of evolution characteristics of hydrocarbon generated from blended organic matters in the lacustrine source rock[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 233-237.
80 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学, 2002,27(6): 659-665.
JIN Z J, ZHANG L P, YANG L, et al. Preliminary study on the geochemistry characteristics of deep fluid and the effect of oil and gas accumulation in the sedimentary basin[J]. Journal of Earth Science, 2002,27(6): 659-665.
81 方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1): 95-104.
FANG X C. Development of residuum hydroprocessing technologies[J].Chemical Industry and Engineering Progress, 2011, 30(1): 95-104.
82 朱全力, 赵旭涛, 赵振兴, 等. 加氢脱硫催化剂与反应机理的研究进展[J]. 分子催化, 2006, 20(4): 372-383.
ZHU Q L, ZHAO X T, ZHAO Z X, et al. Research progress of hydrodesulfurization catalyst and reaction mechanism[J]. Journal of Molecular Catalysis,2006,20(4):372-383.
83 姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507.
YAO C L, QUAN H, ZHANG Z Q. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507.
84 李冬, 李稳宏, 高新, 等. 中低温煤焦油加氢改质工艺研究[J]. 煤炭转化, 2009, 32(4): 81-84.
LI D, LI W H, GAO X, et al. Hydro-upgrading process of medium and low temperature coal tar[J]. Coal Conversion, 2009, 32(4): 81-84.
85 翟西平, 殷长龙, 刘晨光. 油脂加氢制备第二代生物柴油的研究进展[J]. 石油化工, 2011, 40(12): 1364-1369.
ZHAI X P, YIN C L, LIU C G. Advances in second generation biodiesel prepared by hydroprocessing of oils and fats[J]. Petrochemical Technology, 2011, 40(12): 1364-1369.
86 于蓬, 王健, 郑金凤, 等. 氢能利用与发展综述[J]. 汽车实用技术, 2019,23(24): 22-25.
YU P, WANG J, ZHEHG J F, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Te-chnology, 2019,23(24): 22-25.
87 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255.
ZHAO Y Z, MENG B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255.
88 SUVERNA T, RAM P, ASHUTHOSH M, et al. Current scenario of CNG vehicular pollution and their possible abatement technologies: An overview[J]. Environmental Science and Pollution Research, 2020, 27(32): 39977-40000.
89 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[M]. 北京: 中国标准出版社, 2019.
China Hydrogen Energy Alliance. White Paper on China's Hydrogen Energy and Fuel Cell Industry[M]. Beijing: China Standards Press, 2019.
90 毛宗强, 毛志明, 余皓, 等, 制氢工艺与技术[M]. 北京: 化学工业出版社, 2018.
MAO Z Q, MAO Z M, YU H, et al. Hydrogen Production Process and Technology[M].Beijing:Chemical Industry Press, 2018.
91 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13.
HUANG X X, LIAN J J, SHEN W, et al. Economic analysis of China's large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13.
92 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
SUN H X, LI Z, CHEN A B, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
93 吴芝, 孙岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学, 2019, 25(5): 529-552.
WU Z, SUN L, LIN C J. Progress in solar photocatalytic hydrogen production[J]. Journal of Electrochemistry,2019,25(5):529-552.
[1] Zhiyong KANG,Xingwen ZHANG,Xiangguang HUANG,Yan HUI,Long LI. Derivation and application of the new theory equation of condensate gas volume coefficient [J]. Natural Gas Geoscience, 2021, 32(9): 1403-1409.
[2] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[3] Hailiang LIU, Sibing LIU, Dong ZHOU, Wen LIU, Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[4] Zengye XIE, Chunlong YANG, Jian LI, Lu ZHANG, Jianying GUO, Hui JIN, Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[5] An-lai MA, Zhi-liang HE, Lu YUN, Xian WU, Hui-li LI, Nan-sheng QIU, Jian CHANG, Hui-xi LIN, Zi-cheng CAO, Xiu-xiang ZHU, Dong-hua YOU. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060.
[6] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[7] Yu-xiang DING, Guang-you ZHU, Huai-shun ZHANG, Yu-ping ZHOU, Xiao-jie YAO, Gao-en WU, Shun-lin TANG. Source, migration and detection of radon in natural gas [J]. Natural Gas Geoscience, 2021, 32(5): 754-763.
[8] Zhong-xi HAN, Yan-xia GOU, Jin LI, Shou-guo GE, Wen-nian TIAN, Heng HUANG. Content distribution characteristics and genetic analysis of mercury in the natural gas from Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 356-362.
[9] Huai-shun ZHANG, Guang-you ZHU, Yu-xiang DING, Yu-ping ZHOU, Xiao-jie YAO, Gao-en WU, Shun-lin TANG. Sources of mercury in natural gas and mercury removal technology [J]. Natural Gas Geoscience, 2021, 32(3): 363-371.
[10] Guo-jian WANG, Yu-song YUAN, Wu LI, Chuan-zhi WU, Yu ZOU, Li LU, Feng-Li LI. Current situation and existing problems in research of natural gas diffusion coefficient [J]. Natural Gas Geoscience, 2021, 32(3): 372-381.
[11] Zhi-gang WEN, Li-rong DOU, Ding-sheng CHENG, Wei LI. Hydrocarbon characteristics and genesis in the southern depression of Bongor Basin, Chad [J]. Natural Gas Geoscience, 2021, 32(2): 205-214.
[12] . 2021-2025 is a period of great development of China's natural gas industry:Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China [J]. Natural Gas Geoscience, 2021, 32(1): 1-16.
[13] Ai-lin JIA, Dong-bo HE, Yun-sheng WEI, Yi-long LI. Predictions on natural gas development trend in China for the next fifteen years [J]. Natural Gas Geoscience, 2021, 32(1): 17-27.
[14] Yong-qian CUI, Fei-yu WANG, Chuan-bao ZHANG, Wei-ping FENG, Feng-xiang HOU, Xue-feng MA, Ying MA. Orgaofaices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance [J]. Natural Gas Geoscience, 2021, 32(1): 38-46.
[15] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[2] . [J]. Natural Gas Geoscience, 1998, 9(3-4): 9 -18 .
[3] YANG Gui-ru,CUI Zhou-qi,CUI Jun-feng,TIAN Fu-qing. Distribution Characteristics of Gas and Oil Reserves and  Analysis of the Future Reserves Belts in Jizhong Depression[J]. Natural Gas Geoscience, 2009, 20(6): 923 -929 .
[4] . [J]. Natural Gas Geoscience, 1991, 2(3): 115 -122 .
[5] MA Xiang-xian,ZHENG Jian-jing,ZHENG Guo-dong. Catalysis of Iron-bearing Minerals on Hydrocarbon Generation and Evolution of Brown Coal[J]. Natural Gas Geoscience, 2014, 25(7): 1065 -1071 .
[6] HUANG Bao-jia,HUANG Hao,JIN Qiu-yue,ZHOU Gang,ZHAO XING-bin. Characterization of Pores and Methane Sorption Capacity of Permian Shales in Southeast Anhui,Lower Yangtze Region[J]. Natural Gas Geoscience, 2015, 26(8): 1516 -1524 .
[7] Jia Zhi-bin, Hou Du-jie, Sun De-qiang, Huang Yi-xiong. Hydrothermal sedimentary discrimination criteria and its coupling relationship with the source rocks[J]. Natural Gas Geoscience, 2016, 27(6): 1025 -1034 .
[8] Wang Guo-jian,Tang Jun-hong,Tang Yu-ping,Li Ji-peng,Yang Jun,Lu Li. Study on light alkenes forming mechanism in surface geochemistry exploration for oil and gas[J]. Natural Gas Geoscience, 2017, 28(2): 324 -330 .
[9] Cai Chun-fang. Application of organic sulfur isotopic composition to petroleum origin and evolution:A review[J]. Natural Gas Geoscience, 2018, 29(2): 159 -167 .
[10] Wang Xiu-ping,Mou Chuan-long,Xiao Zhao-hui,Zheng Bin-song,Chen Yao,Wang Qi-yu,Liu Wei-qing. Characteristics and preliminary study on genesis of black rock series of Upper Permian Dalong Formation in Hefeng area,Hubei Province[J]. Natural Gas Geoscience, 2018, 29(3): 382 -396 .