Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (9): 1334-1346.doi: 10.11764/j.issn.1672-1926.2021.03.010

Previous Articles     Next Articles

Research on sedimentary evolution characteristics of Cambrian Canglangpu Formation, Sichuan Basin

Yading LI(),Youlian CHEN,Wei YAN,Ruixue DAI,Cheng XI,Yuan HE   

  1. Exploration and Development Research Institute of PetroChina Southwest Oil & Gas Field Company,Chengdu 610041,China
  • Received:2020-11-19 Revised:2021-03-16 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    The Science and Technology Major Project of PetroChina(2016E-06)

Abstract:

In recent years, Sichuan Basin has made major oil and gas exploration discoveries of Dengying Formation and Longwangmiao Formation in Anyue and Gaomo gas fields of Central Sichuan Province. However, due to the complex structural conditions, lack of preliminary basic research and insufficient drilling, geology and seismic data, other fields and strata exploration in the Sinian of Lower Paleozoic in the basin haven’t made great progress. Based on the detailed interpretation of the latest 2D and 3D seismic data, combined with the analysis of field outcrops and drilling geological data, the sedimentary characteristics and evolution of Cambrian Canglangpu Formation in Sichuan Basin are studied under the guidance of sequence stratigraphy, structural geology and sedimentary petrology.The research shows:(1)The top and bottom boundaries of the Canglangpu Formation are reflected in the seismic profile as trough reflections, and there are one or two continuous or intermittent wave crests inside, representing the top boundary of the Cang-1 carbonate rock or the internal lithological interface of the Cang-2 formation.(2)Deyang-Anyue rift trough and the central Sichuan paleo-uplift jointly controlled the deposition of the Canglangpu Formation. The thickness of stratigraphic deposits in the rift trough decreased to the east and west, and in the central Sichuan paleo-uplift area, it increased from the core of the uplift to the edge.(3)The sedimentary facies of the Canglangpu Formation in the basin can be divided into three types: coastal facies, delta facies, and shelf facies. At the same time, various corresponding subfacies and microfacies can be subdivided to determine the Canglangpu Formation. The sedimentary model is the coastal-shallow shelf model.(4)The Canglangpu Formation has obvious sedimentary differentiation. The western part of the Cang-1 rift trough is dominated by littoral-clastic shelf facies deposition, and the eastern part is dominated by clear water shelf carbonate deposits. The range of troughs is further reduced, and the large-scale clear-water shallow shelf deposits and detrital shallow shelf deposits in the basin gradually evolve to mixed shallow shelf deposits.

Key words: Sichuan Basin, Canglangpu Formation, The Deyang-Anyue rift trough, The paleo-uplift of central Sichuan, Sedimentary facies, Sedimentary evolution

CLC Number: 

  • TE121.3+1

Fig.1

Seismic stratigraphic framework of rifting trough edge and interior"

Fig.2

Thickness of Canglangpu Formation in Sichuan Basin and its periphery"

Fig.3

Near vertical seismic section across axis of central Sichuan paleouplift(flattering bottom of Permian Yangxin Formation)"

Fig.4

Comprehensive histogram of Canglangpu Formation in Well JT1"

Fig.5

Comprehensive histogram of Canglangpu Formation in Qiaoting section of Nanjiang"

Table 1

Main sedimentary microfacies types and characteristics of Canglangpu Formation in Sichuan Basin"

微相沉积微相描述沉积环境解释
砂质滨岸岩性主要为细砂岩或中砂岩,常见波痕和各种交错层理、冲洗层理、平行层理、生物扰动等构造,垂向结构剖面多现实向上变粗的沉积旋回,GR曲线呈倒三角形或漏斗形位于平均高潮面与平均低潮面之间,地形平坦,起伏较小,水动力较强,搬运距离较近
砂泥质滨岸岩性主要为浅灰、灰绿、紫色细砂岩、粉砂岩、泥质粉砂岩夹灰绿色、紫色粉砂质泥岩,分选磨圆中等,见各种层理,垂向层序剖面多显示向上变粗和垂向加积的2种沉积序列,GR曲线呈钟型和漏斗形处于平均低潮面以下至正常浪基面之间,是海滩的水下沉积部分,能量较高
水下分流河道底部发育砾岩,顶部发育细砂岩和泥岩,总体呈正旋回序列,见交错层理、平行层理以及冲刷构造。GR曲线低值,多为底部箱型与顶部钟型的组合形态牵引流为主,水动力条件较强
水下分流河道间湾主要岩性为块状层理砂岩、块状层理泥岩、水平层理泥岩,多呈灰色或灰黑色。GR呈高值,曲线形态为指型或者线型水动力条件弱,多见于水下分流河道之间
颗粒滩主要岩性为鲕粒云岩、砂屑云岩等,按照颗粒成分划分有鮞粒滩、砂屑滩、砾屑滩等多个类型,GR曲线形态常呈箱型发育于受地貌控制的局限环境内的高地,水体能量较高,受潮汐和波浪作用的影响
膏云质潟湖岩石类型主要为灰色、深灰色膏云质、灰质等,发育水平层理,GR曲线常呈微齿状箱型处于局限环境内的低洼地带,水体循环受到限制,环境能量低,以静水沉积为主
灰质或云质陆棚主要岩性为泥晶灰岩、生屑灰岩、鲕粒灰岩以及白云岩等类型,GR曲线常呈箱型或齿状箱型形成于正常浪基面之下至风暴浪基面之上的碳酸盐岩为主的浅海陆棚区域,早期水体能量相对弱,晚期随水体变浅沉积较纯碳酸盐岩,顶部常见云化
砂云质或云质陆棚岩性主要为砂质云岩、泥质云岩以及砂岩、泥岩与白云岩互层的岩性组合,GR曲线常呈圣诞树型形成于受陆源碎屑物质影响较大的区域,表现出典型的混积特征,水体能量较弱
砂质或粉砂质陆棚岩性主要为砂岩、粉砂岩、云质砂岩等,GR曲线常呈线性形成于陆源碎屑物供应较充足的区域,水体能量较弱
泥质或砂泥质陆棚沉积物以色暗、细粒为特征,岩性主要为泥质粉砂岩、粉砂质泥岩、泥岩及少量粉砂岩,GR曲线呈尖指形一般位于陆棚靠大陆斜坡一侧的、风暴浪基面以下的浅海区,环境能量低,水体安静,盆地内主要位于德阳—安岳裂陷槽内或受地貌位置控制的相对深水区

Fig.6

Association of typical logging facies and corresponding lithologic of Canglangpu Formation in Sichuan Basin"

Fig.7

Typical sedimentological sign of Canglangpu Formation in Sichuan Basin"

Fig.8

Sedimentary model of Canglangpu Formation in Sichuan Basin"

Fig.9

Sedimentary facies plan of Canglangpu Formation in Sichuan Basin"

1 王文之,范毅,赖强,等. 四川盆地下寒武统沧浪铺组白云岩分布新认识及其油气地质意义[J]. 天然气勘探与开发,2018,41(1):1-7.
WANG W Z,FAN Y,LAI Q,et al. A new understanding of dolomite distribution in the Lower Cambrian Canglangpu Formation of Sichuan Basin: Implication for petroleum geology[J]. Natural Gas Exploration and Development,2018,41(1):1-7.
2 CROSS T A. Controls on coal distribution in transgressive-regressivecycles,Upper Cretaceous,western interior,U.S.A.[C] //WILGUS C K,HASTINGS B S,POSAMENTIER H,et al.Sea-Level Changes:An Integrated Approach.Tulsa:SEPM,1988:371-380.
3 SAWAKI Y,NISHIZAWA M,SUO T,et al. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian Formation,Yunnan Province,South China[J]. Gondwana Research,2008,14(1-2):148-158.
4 金民东,谭秀成,李凌,等. 四川盆地磨溪—高石梯地区下寒武统龙王庙组颗粒滩特征及分布规律[J]. 古地理学报,2015,17(3):347-357.
JIN M D,TAN X C,LI L,et al. Characteristics and distribution of grain bank of the Lower Cambrian Longwangmiao Formation in Moxi-Gaoshiti area,Sichuan Basin[J]. Journal of Palaeogeography,2015,17(3):347-357.
5 杜金虎,张宝民,汪泽成,等. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业,2016,36(6):1-10.
DU J H,ZHANG B M,WANG Z C,et al. Sedimentary model and reservoir genesis of dual grain banks at the Lower Cambri-an Longwangmiao Fm carbonate ramp in the Sichuan Basin[J]. Natural Gas Industry,2016, 36(6):1-10.
6 杨威,魏国齐,谢武仁,等. 四川盆地下寒武统龙王庙组沉积模式新认识[J]. 天然气工业,2018,38(7):8-15.
YANG W,WEI G Q,XIE W R,et al. New understandings of the sedimentation mode of Lower Cambrian Longwangmiao Formation reservoirs in the Sichuan Basin[J]. Natural Gas Industry,2018,38(7):8-15.
7 武赛军,魏国齐,杨威. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学,2016,27(1):61-70.
WU S J,WEI G Q,YANG W. Tongwan movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience,2016,27(1):61-70.
8 尹宏. 乐山—龙女寺古隆起区寒武系沉积相及储层特征研究[D]. 成都:西南石油大学,2007:1-93.
YIN H. Sedimentary Facies and Reservoir Characteristics of Cambrian in Leshan Longnusi Paleouplift Area[D]. Chengdu:Southwest Petroleum University,2007:1-93.
9 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3): 305-312.
WANG Z C,JIANG H,WANG T S,et al. Paleogeomorphological characteristics and reservoir-forming significance of Tongwan period in Sichuan Basin[J]. Petroleum Exploration and Development,2014,41(3):305-312.
10 黄博宇. 四川盆地震旦纪—早寒武世岩相古地理与裂陷槽演化[D]. 北京:中国石油大学(北京),2018:1-69.
HUANG B Y. Lithofacies Palaeogeography and Rift Trough Evolution of Sinian Early Cambrian in Sichuan Basin[D]. Beijing:China University of Petroleum(Beijing),2018:1-69.
11 乐宏,赵路子,杨雨,等. 四川盆地寒武系沧浪铺组油气勘探重大发现及其启示[J]. 天然气工业, 2020, 40(11):11-18.
YUE H,ZHAO L Z,YANG Y,et al. Great discovery of oil and gas exploration in Cambrian Canglangpu Formation of the Sichuan Basin and its implications[J]. Natural Gas Industry,2020,40(11):11-18.
12 孙玮,刘树根,王国芝,等. 四川威远震旦系与下古生界天然气成藏特征[J]. 成都理工大学学报:自然科学版,2010,37(5):481-489.
SUN W,LIU S G,WANG G Z,et al. Characteristics of gas formatted from Sinian to Lower Paleozoic in Weiyuan area of Sichuan Basin,China[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2010,37(5):481-489.
13 杨光,李国辉,李楠,等. 四川盆地多层系油气成藏特征与富集规律[J]. 天然气工业,2016,36(1):1-11.
YANG G,LI G H,LI N,et al. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin[J]. Natural Gas Industry,2016,36(11):1-11.
14 孙志强,马成龙,胡丽. 四川盆地震旦系—中三叠统海相层系生储盖组合研究[J]. 中国西部科技,2010,9(28):18-19.
SUN Z Q,MA C L,HU L. Sinian-Middle Triassic marine strata in the Sichuan Basin[J]. Science and Technology of West China,2010,9(28):18-19.
15 杨威,谢武仁,魏国齐,等. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储层展布与勘探区带[J]. 石油学报,2012,33(2):22-34.
YANG W,XIE W R,WEI G Q,et al. Sequence lithofacies paleogeography,favorable reservoir distribution and exploration zones of the Cambrain and Ordovician in Sichuan Basin,China[J]. Acta Petrolei Sinica, 2012,33(2):22-34.
16 马腾,谭秀成,李凌,等. 四川盆地早寒武世龙王庙期沉积特征与古地理[J]. 沉积学报,2016,34(1):34-48.
MA T,TAN X C,LI L,et al. Sedimentary characteristics and lithofacies palaeogeography during Longwangmiao period of Early Cambrian,Sichuan Basin[J]. Acta Sedimentologica Sinica,2016,34(1):34-48.
17 周进高,沈安江,张建勇,等. 四川盆地德阳—安岳台内裂陷与震旦系勘探方向[J]. 海相油气地质, 2018,23(2):1-9.
ZHOU J G,SHEN A J,ZHANG J Y,et al. Deyang-Anyue interplatform rift in Sichuan Basin and its direction of exploration in Sinian[J]. Marine Origin Petroleum Geology,2018,23(2):1-9.
18 李忠权,刘记,李应,等. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发,2015,42(1):26-34.
LI Z Q,LIU J,LI Y,et al. Characteristics and evolution of the Weiyuan-Anyue extension erosion trough in the Sinian system of the Sichuan Basin[J]. Petroleum Exploration and Development,2015,42(1):26-34.
19 李双建,高平,黄博宇,等. 四川盆地绵阳—长宁凹槽构造演化的沉积约束[J]. 石油与天然气地质, 2018, 39(5):890-898.
LI S J,GAO P,HUANG B Y,et al. Sedimentary constraints on the tectonic evolution of Mianyang-Changning trough in the Sichuan Basin[J]. Oil and Gas Geology,2018,39(5):890-898.
20 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪一早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24-35.
WEI G Q,YANG W,DU J H,et al. Geological characteristics of Sinian-Early Cambrian craton internal rift in Sichuan Basin[J]. Natural Gas Industry,2015,35(1):24-35.
21 邱玉超,罗冰,夏茂龙,等. 四川盆地长宁地区震旦系—寒武系裂陷槽的发现及其地质意义[J]. 天然气勘探与开发,2019,42(2):22-28.
QIU Y C,LUO B,XIA M L,et al. Discovery and geological significance of the Sinian-Cambrian rift trough in the Changning area,Sichuan Basin[J]. Natural Gas Exploration and Development,2019,42(2):22-28.
22 李伟,刘静江,邓胜徽,等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报,2015,36(5):547-563.
LI W,LIU J J,DENG S W,et al. The nature and function of tectonic movements from the Late Sinian to Early Cambrian in Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(5):547-563.
23 宋金民,刘树根,孙玮,等. 兴凯地裂运动对四川盆地灯影组优质储层的控制作用[J]. 成都理工大学学报:自然科学版,2013,40(6):658-670.
SONG J M,LIU S G,SUN W,et al. Control of Xingkai taphrogenesis on Dengying Dormation high quality reservoirs in Upper Sinian of Sichuan Basin,China[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2013,40(6):658-670.
24 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015,35(1):24-35.
WEI G Q,YANG W,DU J H,et al. Geological characteristics of the Sinian-Early Cambrain intracratonic rift,Sichuan Basin[J]. Natural Gas Industry,2015,35(1):24-35.
25 钟勇,李亚林,张晓斌,等. 川中古隆起构造演化特征及其与寒武世绵阳—长宁拉张槽的关系[J]. 成都理工大学学报:自然科学版,2014,41(6):704-712.
ZHONG Y,LI Y L,ZHANG X B,et al. Tectonic evolution characteristics of the central Sichuan paleouplift and its relationship with the Cambrian Mianyang Changning extensional trough[J]. Journal of Chengdu University of Technology:Natural Science,2014,41(6):704-712.
26 彭军,褚江天,陈友莲,等. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020,32(4):12-22.
PENG J,CHU J T,CHEN Y L,et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti Moxi area,Sichuan Basin[J]. Lithologic Reservoirs,2020,32(4):12-22.
27 李伟,余华琪,邓鸿斌. 四川盆地中南部寒武系地层划分对比与沉积演化特征[J]. 石油勘探与开发, 2012,39(6):681-689.
LI W,YU H Q,DENG H B. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin[J]. Petroleum Exploration and Development,2012,39(6):681-689.
28 FOLK R L. Petrology of Sedimentary Rocks[M].Texas:Hemphill Publishing company,1980:28-51.
29 门玉澎,许效松,牟传龙,等. 中上扬子寒武系蒸发岩岩相古地理[J]. 沉积与特提斯地质,2010,30(3):58-64.
MEN Y P,XU X S,MU C L,et al. Sedimentary facies and palaeogeography of the evaporates in the middle-upper Yangtze area[J]. Sedimentary Geology and Tethyan Geology,2010,30(3):58-64.
30 张满郎,谢增业,李熙喆,等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报,2010,28(1):128-139.
ZHANG M L,XIE Z Y,LI X Z,et al. Lithofacies and paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica,2010,28(1):128-139.
[1] Shiyu MA, Wuren XIE, Wei YANG, Shufu DUAN, Zecheng WANG, Saijun WU, Nan SU, Cuiguo HAO, Xiaodan WANG. Lithofacies and paleogeography of the lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(9): 1324-1333.
[2] Rangbin LI,Jinbao DUAN,Lei PAN,Hong LI. Genetic mechanism and main controlling factors of the Middle Permian Maokou Formation dolomite reservoirs in the eastern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1347-1357.
[3] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[4] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[5] Hailiang LIU, Sibing LIU, Dong ZHOU, Wen LIU, Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[6] Zengye XIE, Chunlong YANG, Jian LI, Lu ZHANG, Jianying GUO, Hui JIN, Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[7] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[8] Zhuo WEN, Yong-shang KANG, Liu-xu KANG, Jun LI, Qun ZHAO, Hong-yan WANG. Geological evaluation indexes and lowest limit standards for selection of shale gas industrial construction areas: Case study of X block in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(7): 950-960.
[9] Wei YANG, Man-cang LIU, Guo-qi WEI, Hui JIN, Wu-ren XIE, Sai-jun WU, Nan SU, Qiu-ying ZHU, Cui-guo HAO, Xiao-dan WANG. Sedimentary characteristics and sequence lithofacies paleogeography of the semi-closed carbonate platform of the Leikoupo Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 781-793.
[10] Yi LIN, Cong CHEN, Shi-yu XU, Fan YANG, Yi-yang ZENG, Yang LI, Chun-ni ZHAO, Jing YANG, Kai-lai HE. Characteristics and formation mechanism of ultra-deep carbonate reservoirs in the Devonian Guanwushan Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 794-805.
[11] Rong LI, Cheng-peng SU, Guo-shan SHI, Huo-fu JIA, Su-hua LI, Yang YU. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 806-815.
[12] Zhou YU, Jin-gao ZHOU, Cheng-shan LI, Xiao-jiao SONG, Chao LUO, Xing-ning WU, Dong-xu WU, Cong HU. Tectonic-lithofacies paleogeographic characteristics of Ordovician Kelimoli and Wulalike stages in the western edge of Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 816-825.
[13] Jun-jun CAI, Xian PENG, Qian LI, Tian-hui ZHAN, Zhan-mei ZHU, Wen LI, Xiao-fei GAN, Zhuang DENG, Jia-shu WANG. Subdivision of strongly heterogeneous carbonate gas reservoir and technical countermeasures in different production stages: Case study of Sinian in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 851-860.
[14] Guang-rong ZHANG, Hai-kuan NIE, Xuan TANG, Dong-hui LI, Chuan-xiang SUN, Pei-xian ZHANG. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore:Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(6): 888-898.
[15] Ya-zhen ZHANG, Jian-xiang PEI, Jun-liang LI, Yi-ke DU, De-feng SHI, Yuan-gao XIANG. Tectonic and sedimentary evolution and its controlling effects on regional petroleum plays in the southern South China Sea [J]. Natural Gas Geoscience, 2021, 32(5): 657-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[4] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[5] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .
[6] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .
[7] . MICROFACIES ANALYSIS AND SUBTLE RESERVOIR EXPLORATION XINNONG REG ION, QIANJIANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(2): 249 -255 .
[8] . THE APPLICATION OF 3D CONVERTED WAVE FIRSTBREAK REFRACTION STATIC  IN THE SLG AREA[J]. Natural Gas Geoscience, 2006, 17(2): 272 -275 .
[9] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[10] WU Ming-hui,ZHANG Liu-ping,CHEN Meng-jin. CONTROLLING FACTORS OF PORE DEVELOPMENT OF THE SHAN 2 MEMBER IN YULIN GAS FIELD[J]. Natural Gas Geoscience, 2006, 17(4): 477 -479 .