Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (6): 806-815.doi: 10.11764/j.issn.1672-1926.2021.02.005

Previous Articles     Next Articles

The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin

Rong LI(),Cheng-peng SU,Guo-shan SHI,Huo-fu JIA,Su-hua LI,Yang YU   

  1. Petroleum Exploration and Production Research Institute,Southwest Petroleum Branch,SINOPEC,Chengdu 610041,China
  • Received:2020-12-11 Revised:2021-02-02 Online:2021-06-10 Published:2021-05-24
  • Supported by:
    The Science and Technology Projects of China Petroleum and Chemical Corporation(P20059-3)

Abstract:

Industrial natural gas flows have been gained from the wells penetrated in the nodular limestone, shows a good potential for natural gas exploration. In the early stage, the research on the formation of this reservoir is not in-depth enough, which restricts the exploration of this type of gas reservoir. Based on core observation, thin section authentication, combined with the results of scanning electron microscope, nitrogen adsorption and desorption, rare earth elements, trace elements and energy spectrum analysis, three achievements were gained. The results show that the reservoirs mostly exist in the argillaceous limestone matrix, which is a set of tight carbonate fracture-pore reservoir with low porosity and low permeability. The reservoir space is complex and the talc diagenetic shrinkage fissure is the greatest contribution storage space to the reservoir. Talc is mainly transformed from sepiolite during diagenesis, the silicon element in sepiolite comes from the fault hydrothermal fluid of Maokou Formation in the same sedimentary period, and magnesium comes from bound pore water and conversion release of a metastable mineral. Sepiolite transforms into talc under the influence of pressure, temperature, buried time and grade of maturity during burial. Due to dehydration and silica precipitation, the crystal gets smaller, which formed large-scale of talc diagenetic shrinkage fissure that lays the material foundation for reservoir. Research results provide strong geological support for the nodular gas pool exploration of the first member of Maokou Formation of Permian in southern Sichuan Basin. It has a good guiding significance for oil and gas exploration.

Key words: Southern Sichuan Basin, The first member of Maokou Formatin, Nodular limestone, Talc, Cause of reservoir

CLC Number: 

  • TE122.2+4

Fig.1

The location map (a) and the Lithological profile (b) of the southern Sichuan Basin"

Fig.2

Vertical lithologic structure characteristics in study area (Well A1)"

Fig.3

Petrologic feature of the first member of Maokou Formation,southern Sichuan Basin"

Fig.4

The main storage space type of first member of Maokou Formation, southern Sichuan Basin"

Fig.5

The characteristic of physical property and pore structure of first member of Maokou Formation,southern Sichuan Basin"

Table 1

Rare earth trace elements and microelement in argillaceous limestone of first member of Maokou Formation,southern Sichuan Basin"

样品

编号

岩性

Y

/(μg/g)

La

/(μg/g)

Ce

/(μg/g)

Pr

/(μg/g)

Nd

/(μg/g)

Sm

/(μg/g)

Eu

/(μg/g)

Gd

/(μg/g)

Tb

/(μg/g)

Dy

/(μg/g)

A1-70泥灰岩0.320.610.070.290.060.020.080.020.111.75
A1-79泥灰岩0.831.510.180.700.140.030.150.030.182.02
A1-87泥灰岩1.312.260.281.060.210.040.170.030.161.35
A1-89泥灰岩1.873.390.401.490.320.070.360.070.443.56
A1-101泥灰岩0.711.220.140.510.100.020.090.020.090.76
A1-104泥灰岩0.991.920.230.850.160.030.130.020.131.00
A1-110泥灰岩1.602.950.361.360.230.050.180.030.150.95
A1-112泥灰岩1.032.070.260.980.160.030.140.030.171.50
A1-116泥灰岩0.551.010.120.490.090.020.080.010.091.03
A1-124泥灰岩1.572.900.351.310.240.030.190.030.171.15
A1-125泥灰岩1.222.150.251.000.170.030.140.030.141.31
A1-126泥灰岩0.590.980.120.440.090.030.090.020.121.45
A1-129泥灰岩1.342.370.301.120.220.040.200.040.211.84
A1-133泥灰岩0.741.240.150.560.110.020.090.020.090.94
A1-135泥灰岩0.921.990.271.060.170.030.130.020.131.34
A1-136泥灰岩1.442.580.331.230.220.040.170.030.181.68
A1-139泥灰岩1.021.780.210.830.150.030.10.030.161.50

样品

编号

岩性

Ho

/(μg/g)

Er

/(μg/g)

Tm

/(μg/g)

Yb

/(μg/g)

Lu

/(μg/g)

∑REE

/(μg/g)

δCeY/HoSr/Ba
A1-70泥灰岩0.030.110.020.130.021.780.745884.15
A1-79泥灰岩0.040.120.020.140.021.730.7151137.06
A1-87泥灰岩0.040.100.020.090.023.640.6834104.49
A1-89泥灰岩0.100.300.060.360.066.110.713667.53
A1-101泥灰岩0.020.060.010.080.011.040.693889.63
A1-104泥灰岩0.030.080.010.090.027.140.7433129.09
A1-110泥灰岩0.030.080.020.090.0212.850.7132203.69
A1-112泥灰岩0.040.110.020.120.023.840.7438160.46
A1-116泥灰岩0.020.070.010.070.015.690.7252175.73
A1-124泥灰岩0.030.090.020.090.028.10.7138157.31
A1-125泥灰岩0.030.090.020.110.026.680.744198.81
A1-126泥灰岩0.030.080.020.090.023.670.664841.38
A1-129泥灰岩0.050.140.020.160.031.640.6837151.65
A1-133泥灰岩0.020.060.010.060.018.190.6747151.14
A1-135泥灰岩0.030.100.020.120.026.710.7545205.82
A1-136泥灰岩0.040.120.020.130.024.170.6942157.04
A1-139泥灰岩0.030.110.020.120.028.080.75088.37

Fig.6

Diagram of rare earth elements and the evolution graph hermal evolution history and burial history of first member of Maokou Formation,southern Sichuan Basin"

1 刘荞菲. 瘤状灰岩的分类及成因研究[J].四川有色金属,2015(2):26-29.
LIU Q F. The classification and the causes of nodular limestone[J].Sichuan Nonferrous Metals,2015(2):26-29.
2 刘杰,李蔚洋,何幼斌. 四川旺苍双汇下二叠统茅口组眼球状石灰岩成因分析[J].海相油气地质,2011,16(1):63-67.
LIU J, LI W Y, HE Y B. Genetic analysis of Lower Permian Maokou augen limestone in Wangcang area, Sichuan Basin[J].Marine Origin Petroleum Geology,2011,16(1):63-67.
3 郝家栩,彭成龙,张国祥,等. 滇西施甸地区寒武系—泥盆系瘤状灰岩特征及成因探讨[J].贵州大学学报:自然科学版,2014,31(5):43-47.
HAO J X,PENG C L,ZHANG G X,et al. Discuss on origin of the Cambrian-Devonian nodular limestone in Shidian region. Yunnan Province[J].Journal of Guizhou University:Natural Sciences,2014,31(5):43-47.
4 林春明,张妮,张霞,等. 安徽巢湖平顶山西坡剖面下三叠统殷坑组瘤状灰岩特征[J].地球科学与环境学报,2017,39(4):476-490.
LIN C M, ZHANG N, ZHANG X, et al. Characteristics of nodular limestone from the Lower Triassic Yinkeng Formation at west Pingdingshan section in Chaohu of Anhui, China[J].Journal of Earth Sciences and Environment,2017,39(4):476-490.
5 夏丹,汪凯明,罗顺社,等. 燕山地区高于庄组张家峪亚组瘤状灰岩成因研究[J].石油地质与工程,2009,23(1):4-7.
XIA D,WANG K M,LUO S S,et al. The causes of nodular limestone of Zhangjiayu period of Gaoyuzhuang Formation in Yanshan area[J].Petroleum Geology and Engineering,2009,23(1):4-7.
6 白云风,程日辉,王璞珺,等. 库鲁克塔格地区巷古勒塔格组瘤状灰岩及其沉积环境[J].新疆地质,2006,24(4):361-364.
BAI Y F, CHENG R H, WANG P J, et al. Nodular limestone in the warty sedimentary sequence of the Hanguletag Formation in Kuruktag, Xinjiang[J].Xinjiang Geology,2006,24(4):361-364.
7 朱洪发,王恕一. 苏南、皖南三叠纪瘤状灰岩、蠕虫状灰岩的成因[J].石油实验地质,1992,14(4):455-460.
ZHU H F, WANG S Y. The causes of nodular limestone and vermicular limestone of Triassic in southern Anhui[J].Petroleum Geology & Experiment,1992,14(4):455-460.
8 董兆雄,朱晓惠,侯方浩,等. 一种特殊瘤状灰岩的成因研究[J].沉积学报,2002,20(1):20-24.
DONG Z X, ZHU X H, HOU F H, et al. Study on origin of special nodular limestone[J].Acta Sedimentologica Sinica,2002,20(1):20-24.
9 张霞,林春明,凌洪飞,等. 浙西地区奥陶系砚瓦山组瘤状灰岩及其成因探讨[J].古地理学报,2009,11(5):481-490.
ZHANG X,LIN C M,LING H F,et al. Nodular limestone and its genesis from the Ordovician Yanwashan Formation in western Zhejiang Province[J].Journal of Palaeogeography,2009,11(5):481-490.
10 靳学斌,李壮福,陆鹿,等. 下扬子巢湖地区下三叠统瘤状灰岩成因再探讨[J].高校地质学报,2014,20(3):445-453.
JIN X B,LI Z F,LU L,et al. Reappraisal of the origin of Lower Triassic nodular limestone in the Chaohu area, lower Yangtze region[J].Geological Journal of China Universities,2014,20(3):445-453.
11 刘瑾,夏文谦,李晶晶,等. 川东南地区茅一段储层特征分析[J].科技通报,2019,35(7):26-32.
LIU J,XIA W Q,LI J J,et al. Analysis of reservoir characteristics of the first member of Maokou Formation in southeastern Sichuan Basin[J].Bulletin of Science and Technology,2019,35(7):26-32.
12 赵宗举,周慧,陈轩,等. 四川盆地及邻区二叠纪层序岩相古地理及有利勘探区带[J].石油学报,2012,33(2):35-51.
ZHAO Z J,ZHOU H,CHEN X,et al. Sequence lithofacies paleogeography and favorable exploration zones of the Permian in Sichuan Basin and adjacent areas, China[J].Acta Petrolei Sinica,2012,33(2):35-51.
13 AMBERG C E A,COLLART T,SALENBIEN W,et al. The nature of ordovician limestone-marl alternations in the Oslo-Asker district (Norway):Witnesses of primary glacio-eustasy or diagenetic rhythms[J].Scientific Reports,2016,6:1-13.
14 苏成鹏,谭秀成,王小芳,等. 四川盆地东部中二叠统茅口组眼球状石灰岩储层特征及成因[J].海相油气地质,2020,25(1):55-62.
SU C P,TAN X C,WANG X F,et al. Characteristics of eyeball-shaped limestone reservoir and its genesis of the middle Permian Maokou Formation in east Sichuan Basin[J].Marine Origin Petroleum Geology,2020,25(1):55-62.
15 谢宏. 贵州滑石矿床类型及找矿标志[J].中国非金属矿工业导刊,2012(3):61-63.
XIE H. Types of talc deposits in Guizhou and their prospecting indications[J].China Non-metallic Mining Industry Herald,2012(3):61-63.
16 苏成鹏. 华南二叠系乌拉尔统—瓜德鲁普统灰岩—泥灰岩韵律特征、成因机理及地质意义[D].成都:西南石油大学,2020:79-81.
SU C P. Characteristics, Genetic Mechanism and Geological Significance of the Cisuralian to Guadalupian Limesyone-Marl Alternations in the Permian of South China[D].Chengdu:Sou-thwest Petroleum University,2020:79-81.
17 杨振强,徐俊文. 萍乐坳陷海泡石的形成及后期变化[J].中国地质科学院宜昌地质矿产研究所所刊,1986(12):31-54.
YANG Z Q,XU J W. The formation and post-sedimentary alternation of sepiolite in Pingle Depression[J].Bull Yichang Institute Geology.Mineral Resources,CAGS,1986(12):31-54.
18 陈芸菁,王佩英,任磊夫. 海泡石在成岩作用过程中向滑石转化的研究[J].科学通报,1985,30(4):284-287.
CHEN Y J,WANG P Y,REN L F. Study on sepiolite transitioning to talc during diagenesis[J].Chinese Science Bulletin,1985,30(4):284-287.
19 杨振强,陈善庆,许俊文. 萍乐坳陷早二叠世海相海泡石矿物相转化的地质找矿意义[J].沉积学报,1988,6(1):88-96.
YANG Z Q,CHEN S Q,XU J W. Geological and prospective significance of the Early Permian, marine sepiolite-phase transformation in Pingxian-Leping Depression[J].Acta Sedimentologica Sinica,1988,6(1):88-96.
20 黄勇,陈能松,白龙,等. 贵州罗甸玉矿区滑石的发现及其成因探讨[J].贵州地质,2019,36(2):120-127.
HUANG Y,CHEN N S,BAI L,et al. Discovery and its genesis of talc ore in Luodian nephrite mineral area in Guizhou Province[J].Guizhou Geology,2019,36(2):120-127.
21 TATEP F,SABBADINI R,MORANDI N. Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile: Evidence of an arid climate[J].Journal of African Earth Sciences,2000,31(3):633-645.
22 POZO M,CARRETERO M I,GALAN E. Approach to the trace element geochemistry of non-marine sepiolite deposits: Influence of the sedimentary environment(Madrid Basin,Spain)[J].Applied Clay Science,2016,131:27-43.
23 MADHAVARAJU J,RAMASAMY S,RUFFELL A,et al. Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin(southeastern India):Implications for sediment source and palaeoclimates at the K/T boundary[J].Cretaceous Research,2002,23(2):153-163.
24 CAVALCANTE F,BELVISO C,BENTIVENGA M,et al. Occurrence of palygorskite and sepiolite in Upper Paleocene-middle Eocene marine deep sediments of the Lagonegro Basin(Southern Apennines-Italy):Paleoenvironmental and provena-nce inferences[J].Sedimentary Geology,2011,233(1):42-52.
25 刘德镒. 湖南下二叠统海泡石及其主要伴生粘土矿物的扫描电镜研究[J].岩相古地理,1990,1:46-55.
LIU D Y. The use of scanning electron microscopy in the study of Lower Permian Sepiolite and its main associated minerals in Hunan[J].Sedimentary Facies and Palaeogeography,1990,1:46-55.
26 YAN J,MUNNECKE A,STEUBER T,et al. Marine Sepiolite in middle permian carbonates of south China: Implications for secular variation of Phanerozoic seawater chemistry[J].Journal of Sedimentary Research,2005,75(3):328-338.
27 CHENGPENG S,FEI L,XIUCHENG T,et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: A case study from permian of south China[J].Marine and Petroleum Geology,2020,111:765-785
28 周新平,何幼斌,罗进雄,等. 川东地区二叠系结核状、条带状及团块状硅岩成因[J].古地理学报,2012,14(2):143-154.
ZHOU X P,HE Y B,LUO J X,et al. Origin of the Permian nodular,striped and lump siliceous rock in eastern Sichuan Province[J].Journal of Palaeogeography,2012,14(2):143-154.
29 赵振洋,李双建,王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J].地球科学进展,2020,35(2):137-153.
ZHAO Z Y,LI S J,WANG G H. Discussion on sedimentary environments,origin and source of middle Permian Gufeng Formation bedded cherts in the northern margin of the middle-lower Yangtze area[J].Advances in Earth Science,2020,35(2):137-153.
30 何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J].地球科学,2005,30(1):89-96.
HE B,XU Y G,WANG Y M,et al. Nature of the Dongwu movement and its temporal and spatial evolution[J].Earth Science: Journal of China University of Geosciences,2005,30(1):89-96.
31 HORITA J,ZIMMERMANN H,HOLLAND H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J].Geochimica et Cosmochimica Acta,2002,66(21):3733-3756.
32 LOWENSTEIN T K,TIMOFEEFF M N,BRENNAN S T,et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001, 294(5544):1086-1088.
33 胡东风,王良军,张汉荣,等. 碳酸盐岩烃源岩气藏的发现及其油气地质意义——以四川盆地涪陵地区中二叠统茅口组一段气藏为例[J].天然气工业,2020,40(7):23-33.
HU D F,WANG L J,ZHANG H R,et al. Discovery of carbonate source rock gas reservoir and its petroleum geological implications: A case study of the gas reservoir in the first member of Middle Permian Maokou Formation in the Fuling area, Sichuan Basin[J].Natural Gas Industry,2020,40(7):23-33.
[1] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[2] JIANG Qiang,ZHU Chuan-qing,QIU Nan-sheng,CAO Huan-yu. Paleo-heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin,SW China [J]. Natural Gas Geoscience, 2015, 26(8): 1563-1570.
[3] ZHANG Ji-zhen,LI Xian-qing,GUO Man,DONG Ze-liang,WANG Zhe,FU Qing-hua,WANG Fei-yu. Microscopic Pore Characteristics and Its Influence Factors of the Permian Longtan Formation Shales in the Southern Sichuan Basin [J]. Natural Gas Geoscience, 2015, 26(8): 1571-1578.
[4] ZHAO Pei,LI Xian-qing,TIAN Xing-wang,SU Gui-ping,ZHANG Ming-yang,GUO Man,DONG Ze-liang,SUN Meng-meng,WANG Fei-yu. Study on Micropore Structure Characteristics of Longmaxi FormationShale Gas Reservoirs in the Southern Sichuan Basin [J]. Natural Gas Geoscience, 2014, 25(6): 947-956.
[5] WANG Xiu-ping, MOU Chuan-long, GE Xiang-ying, CHEN Xiao-wei, ZHOU Ken-ken, WANG Qi-yu, LIANG Wei, CHEN Chao. Study on Clay Minerals in the Lower Silurian Longmaxi Formation in Southern Sichuan Basin and Its Periphery [J]. Natural Gas Geoscience, 2014, 25(11): 1781-1794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 2002, 13(1-2): 1 -7 .
[2] WANG Xiao-lin ;HU Wen-xuan ; ZHANG Jun-tao ;QIAN Yi-xiong, ZHU JING-quan ; WU Shi-qiang . Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin[J]. Natural Gas Geoscience, 2008, 19(3): 320 -326 .
[3] . [J]. Natural Gas Geoscience, 1992, 3(3): 11 -14 .
[4] . [J]. Natural Gas Geoscience, 1994, 5(5): 6 -11 .
[5] ZHAO Jin-zhou,XU Wen-jun,LI Yong-ming,HU Jin-yang,LI Jin-qin. A New Method for Fracability Evaluation of Shale-gas Reservoirs[J]. Natural Gas Geoscience, 2015, 26(6): 1165 -1172 .
[6] Zhou Peng,Tang Yan-gang,Yin Hong-wei,Zhao Shuang-feng,Mo Tao,Zhang Xing,Zhu Wen-hui,Li Chang-sheng. Relationship between characteristics of fracture belt and productionof Keshen 2 gas reservoir in Kelasu tectonic zone,Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(1): 135 -145 .
[7] Liu Jie,Zhang Jian-zhong,Sun Yun-bao,Zhao Tie-hu. Gas hydrate reservoir parameter evaluation using logging datain the Shenhu area,South China Sea[J]. Natural Gas Geoscience, 2017, 28(1): 164 -172 .
[8] Wang Long,Xie Xiao-jun,Liu Shi-xiang,Song Shuang,Wang Yi-bo,Tang Wu,Guo Jia,Sun Rui. Analysis of hydrocarbon accumulation and diversity  of the major basins in mid-southern part of the South China Sea[J]. Natural Gas Geoscience, 2017, 28(10): 1546 -1554 .
[9] Yang Hai-jun, Zhang Rong-hu, Yang Xian-zhang, Wang Ke, Wang Jun-peng, Tang Yan-gang, Zhou Lu. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield,Kuqa Depression,Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(7): 942 -950 .
[10] Li Guo-xin , Yi Shi-wei , Lin Shi-guo , Gao Yang , Li Ming-peng , Li De-jiang , Wang Chang-yong . Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression,Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1506 -1517 .