Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (8): 1127-1141.doi: 10.11764/j.issn.1672-1926.2021.02.004

Previous Articles     Next Articles

Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin

Hailiang LIU1,2(),Sibing LIU1,2(),Dong ZHOU1,2,Wen LIU1,3,Siding JIN1,2   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China
    2.College of Energy,Chengdu University of Technology,Chengdu 610059,China
    3.College of Geosciences,Chengdu University of Technology,Chengdu 610059,China
  • Received:2020-12-11 Revised:2021-02-02 Online:2021-08-10 Published:2021-08-25
  • Contact: Sibing LIU E-mail:171592257@qq.com;lsbcdut@163.com
  • Supported by:
    The National Natural Science Foundation of China(41972158)

Abstract:

The genetic tight sandstone gas types and sources in the western Sichuan Basin has been analyzed by systematic testing of the components of typical drilling natural gas, light hydrocarbon, carbon isotopes and the light hydrocarbon extracted from the source rock. The tight sandstone gas is mainly composed of coal-derived gas, and mixed gas only exists in the 2nd Member of the Xujiahe Formation(T3x2). The natural gas source is characterized by lower generation and upper storage. Among them, the natural gas in T3x2 is mainly derived from the self-generated source rock in T3x2 and Xiaotangzi Formation (T3t). The 4th Member of the Xujiahe Formation (T3x4) natural gas is mainly derived from 3rd Member of the Xujiahe Formation (T3x3) source rock, and the migration distance of natural gas is relatively short. However, Jurassic natural gas is mainly derived from 5th Member of the Xujiahe Formation (T3x5) in the Upper Triassic, and resulting from the contribution of the early gas reservoirs in the Xujiahe Formation with a relatively long migration distance. In this paper, three groups of nine natural gas migration geochemical indicators were selected to trace the natural gas migration and the migration direction, phase and channel of tight sandstone gas in the study area have been determined. The geochemical indicator groups including: (1) Migration direction and distance indicators: methane content (WCH4), ethane content (WC2H6), non-hydrocarbon content (WCO2 and WN2) and methane carbon isotope (δ13C1). (2) Migration phase state indicators: benzene/n-hexane, benzene/cyclohexane. (3) Migration channel indicators: iC4/nC4 and iC5/nC5. The results show that the Upper Jurassic natural gas was mainly migrated through the channel with a high velocity from the Xujiahe Formation (underlying strata), and the fault is the most important migration channel. Part of the Middle Jurassic natural gas was migrated from the Xujiahe Formation along the faults, while part of the lower natural gas was accumulated in the form of water-soluble phase. The reservoir was relatively tightness and the migration channel was not well developed in T3x4, and the natural gas was mainly migrated with diffusion phase in short distance. The natural gas was migrated through faults and associated fractures with the free phase and the water-soluble phase in short distance.

Key words: Sichuan Basin, Tight sandstone gas, Geochemistry, Genesis of natural gas, Nature gas migration tracing

CLC Number: 

  • TE121.1+13

Fig.1

Unit division and gas field distribution of Western Sichuan Depression(modified after YE et al.[11])"

Fig.2

Stratigraphic survey of western Sichuan Basin (modified after YE et al.[11])"

Table 1

Characteristic of components, carbon and isotope of Jurassic natural gas in western Sichuan Basin"

井号层位井深/m主要烃类组分含量/%异丁烷/正丁烷异戊烷/正戊烷苯/正己烷苯/环己烷
甲烷乙烷丙烷
川合358井J31 05194.1533.0970.0121.0321.9930.4010.304
川泰361井J367994.3941.2910.0201.1802.4110.3770.297
川鸭609井J31 789.590.2584.2190.0220.9431.6920.5440.461
都蓬30井J31 149.3589.1005.2910.0241.0331.7290.2050.195
金遂2井J31 649.0588.9835.8970.0280.7441.726//
龙67井J31 274.588.3235.8750.0250.8191.9530.1410.121
马蓬13井J31 92389.4866.0770.0240.8581.6430.0560.059
新34井J3739.897.6011.5890.0061.0482.192//
新浅100井J3957.291.0915.1050.0210.8642.0170.0560.077
新浅31井J31 05289.3645.0000.0300.8411.8290.1140.091
新浅56井J31 387.591.9464.3740.0160.8951.6750.7040.442
J3平均值1 241.10091.3364.3470.0210.9321.8960.2890.227
川孝105井J21 90588.2998.0660.0160.9661.7771.2350.835
川孝163井J22 72685.4349.6010.0200.7351.5101.6601.235
川孝168井J22 03688.8577.6950.0200.9171.6780.2880.455
川孝380井J22 38486.0539.4810.0230.7961.5902.3552.071
川孝454井J22 37986.7407.5370.0250.8131.5923.4732.256
川孝455井J22 52085.2496.4570.0360.9281.5701.7371.385
川鸭609井J22 021.590.3004.1910.0220.7811.7030.5570.460
江沙7井J22 420.0784.6958.3930.0300.7971.6561.4371.398
J2平均值2 298.95086.9537.6780.0240.8421.6341.5931.262

Table 2

Characteristic of components, carbon and isotope of natural gas of Xujiahe Formation in western Sichuan Basin"

井号层位井深/m烃类组分含量/%异丁烷/正丁烷异戊烷/正戊烷苯/正己烷苯/环己烷
甲烷乙烷丙烷
川丰131井T3x43 72890.4867.8120.0311.0741.9310.8090.544
川丰563井T3x43 73895.0982.5650.0121.3842.8141.2981.170
川丰563井T3x43 742.591.7945.5680.0111.3872.7930.8411.269
川孝560井T3x43 90196.1442.9010.0061.5032.7712.3261.362
川孝93T3x43 413.590.4315.3591.9870.9001.9240.8890.683
丰谷1井T3x43 36088.2818.1500.0471.1521.9920.5520.406
新882井T3x43 39192.9343.5460.0141.0791.8420.7180.494
新884井T3x43 376.297.6532.0470.0021.1492.5981.6100.282
T3x4平均值3 581.28091.6024.7430.2641.2042.3331.1300.776
川高561井T3x24 95898.7150.9330.0021.0372.873//
川合127井T3x24 588.598.5491.0720.0021.1694.0851.9661.598
川合137井T3x24 612.93597.5841.7130.0031.1482.996//
川江566井T3x24 362.596.9032.0460.0051.4193.6012.3621.575
川江566井T3x24 75096.9482.0060.0051.4093.5452.1221.412
联150T3x24 825.398.6781.0090.0021.0823.0452.0701.863
新2井T3x24 818.2498.6381.0220.0021.2182.9112.8071.296
新853井T3x25 04998.6570.9890.0021.2043.1952.9231.520
新856井T3x24 59298.6151.0330.0021.2143.5622.8091.501
新856井T3x24 838.298.6660.9810.0021.2103.2643.0601.457
T3x2平均值4 739.47098.1951.2800.0031.2113.3082.5151.528

Fig.3

Distribution characteristics of carbon and isotope series of continental natural gas in Western Sichuan Depression"

Fig.4

Relationship between δ13C1 and δ13C2 of natural gas in Western Sichuan Depression"

Table 3

Characteristic of light hydrocarbons extracted from natural gas and source rocks"

井号层位样品类型iC6/nC6MCH/NC7MH/NC7异庚烷值2-甲基戊烷/3-甲基戊烷
洛深1井T3m+t烃源岩2.548.191.382.801.82
龙深1T3m+t烃源岩2.828.251.072.461.22
新856-1T3x2烃源岩2.389.250.662.671.13
川高561T3x2天然气2.9410.011.312.761.64
川江566T3x2天然气2.9910.321.242.651.56
新11T3x3烃源岩1.5321.612.281.731.33
川合100T3x3烃源岩1.5227.442.051.531.25
新11T3x4烃源岩1.5427.912.581.960.96
川孝568T3x4烃源岩1.6425.042.381.711.18
川孝560T3x4天然气1.9026.552.601.721.75
新882T3x4天然气1.9224.342.101.611.72
新856-3T3x5烃源岩2.113.681.282.031.63
新884-1T3x5烃源岩1.873.061.062.211.83
川合358J3天然气1.983.951.042.491.64
新浅31J3天然气2.053.671.092.161.60
川孝105J2天然气1.854.141.012.801.61
川孝455J2天然气1.803.371.102.341.76

Fig.5

Comparison of light hydrocarbon parameters of natural gas in Western Sichuan Depression"

Fig.6

Relationship between depth and CH4,C2H6 of natural gas in western Sichuan Basin"

Fig.7

Relationship between depth and CO2,N2 of natural gas in western Sichuan Basin"

Fig.8

Relationship between depth and iC4/nC4,iC5/nC5 of natural gas in western Sichuan Basin"

Fig.9

Relationship between depth and C6H6/CH3(CH2)4CH2,C6H6/C6H12 of natural gas in the middle Western Sichuan Depression"

Fig.10

Migration mechanism and model of tight sandstone gas in western Sichuan Basin"

1 王屿涛, 吕纯刚, 姚爱国, 等.准噶尔盆地致密砂岩气资源潜力及勘探前景[J].天然气地球科学, 2015, 26(5): 855-860.
WANG Y T, LV C G, YAO A G, et al. Tight sandstone gas resource potential and exploration prospect in the Junggar Basin[J]. Natural Gas Geoscience, 2015,26(5): 855-860.
2 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发,2012,39(3): 257-264.
DAI J X,NI Y Y,WU X Q.Tight gas in China and its significance and exploaitation[J].Petroleum Exploration and Development,2012,39(3):257-264.
3 魏国齐,张福东,李君,等.中国致密砂岩气成藏理论进展[J].天然气地球科学, 2016, 27(2): 199-210.
WEI G Q, ZHNAG F D, LI J, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience, 2016, 27(2): 199-210.
4 郭迎春,庞雄奇,陈冬霞,等.致密砂岩气成藏研究进展及值得关注的几个问题[J].石油与天然气地质,2013,34(6):717-724.
GUO Y C,PANG X Q,CHEN D X, et al. Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns[J]. Oil & Gas Geology,2013, 34(6): 717-724.
5 PRINZHOFR A, MELLO M R, TAKAKI T. Geochemical characterization of natural gas: A physical multivariable approach and its applications in maturity and migration estimates[J]. AAPG Bulletin,2000,84(8):1152-1172.
6 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,4(2):1-40.
DAI J X, Hydrocarbon isotopic characteristics and identification of natural gas[J]. Natural Gas Geoscience, 1993, 4(2): 1-40.
7 刘文汇, 陈孟晋, 关平, 等. 天然气成藏过程的三元地球化学示踪体系[J]. 中国科学: 地球科学,2007, 37(7): 908-915.
LIU W H, CHEN M J, GUAN P, et al. Ternary geochemical-tracing system in natural gas accumulation[J]. Science China: Earth Science, 2007, 37(7): 908-915.
8 沈忠民, 王鹏, 刘四兵, 等. 川西坳陷中段须家河组天然气碳同位素特征[J]. 天然气地球科学, 2011, 22(5): 834-839.
SHEN Z M, WANG P, LIU S B, et al. Carbon isotopes of Xujiahe Formation nature gas in nature gas in middle part of western of Sichuan Depression[J].Natural Gas Geoscience,2011, 22(5): 834-839.
9 PRINZHOFER A, SANTOS N E V, BATTAN A. Coupled use of carbon isotopes and noble gas isotopes in the Potiguar Basin(Brazil): Fluids migration and mantle influence[J]. Marine and Petroleum Geology,2010,27(6):1273-1284.
10 PRINZHOFR A, MELLO M R, SILVA L C, et al. New geochemical characterization of natural gas and its use in oil and gas evaluation (in petroleum systems of South Atlantic margins)[J]. AAPG Memoir, 2000, 73(1-2): 107-119.
11 叶素娟, 朱宏权, 李嵘, 等. 天然气运移有机—无机地球化学示踪指标——以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 2017, 44(4): 549-560.
YE S J, ZHU H Q, LI R, et al. Tracing natural gas migration by integrating organic and inorganic geochemical data: A case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 549-560.
12 苗忠英, 陈践发, 张晨, 等. 塔里木盆地轮南低凸起天然气分布规律与成藏期次[J]. 石油学报, 2011, 32(3): 404-410.
MIAO Z Y, CHEN J F, ZHANG C, et al. Regularity of distribution and accumulation stages of natural gases in the Lunnan Lower Uplift of the Tarim Basin[J]. Acta Petrolei Sinica, 2011, 32(3): 404-410.
13 戴金星, 邹才能, 张水昌, 等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学: 地球科学, 2008, 38(11): 1329-1341.
DAI J X, ZOU C N, ZHANG S C, et al. Identification of inorganic and orgnic alkane gas[J]. Science China: Earth Science, 2008, 38(11): 1329-1341.
14 苑坤,杨飞,刘彬,等,新场气田上三叠统须家河组五段天然气成藏主控因素分析[J].石油天然气学报,2016,38(3):23-29.
YUAN K, YANG F, LIU B, et al. Main controlling factors of hydrocarbon accumulation for 5th section Xujiahe Formation Upper Triassic Series in Xinchang Gas Field[J]. Journal of Oil and Gas Technology,2016,38(3):23-29.
15 李国辉, 李楠, 谢继容, 等.四川盆地上三叠统须家河组前陆大气区基本特征及勘探有利区[J].天然气工业, 2012, 32(3): 15-21.
LI G H, LI N, XIE J R, et al. Basic features of large gas play fairways in the Upper Triassic Xujiahe Formation of the Sichuan Foreland Basin and evaluation of favorable exploration zones[J]. Natural Gas Industry, 2012, 32(3): 15-21.
16 魏国齐, 杨威, 刘满仓, 等.四川盆地大气田分布、主控因素与勘探方向[J].天然气工业, 2019, 39(6): 1-12.
WEI G Q, YANG W, LIU M C, et al. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 1-12.
17 刘忠群, 徐士林, 刘君龙,等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020,40(2):31-40.
LIU Z Q, XU S L, LIU J L, et al. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40.
18 黎华继, 严焕榕, 詹泽东,等. 川西坳陷侏罗系致密砂岩气藏储层精细评价[J]. 天然气工业,2019,39(S1): 129-135.
LI H J, YAN H R, ZHAN Z D, et al. Fine evaluation of Jurassic tight sandstone gas reservoir in Western Sichuan Depression[J]. Natural Gas Industry, 2019,39(S1):129-135.
19 赵政璋, 杜金虎. 非常规油气资源现实的勘探开发领域:致密油气[M]. 北京: 石油工业出版社, 2012.
ZHAO Z Z, DU J H. Real Exploration and Development Field of Unconventional Oil and Gas Resources: Tight Oil and Gas[M]. Beijing: Petroleum Industry Press, 2012.
20 段永明, 张岩, 刘成川, 等. 川西致密砂岩气藏开发实践与认识[J]. 天然气地球科学, 2016, 27(7): 1352-1360.
DUAN Y M, ZHANG Y, LIU C C, et al. Development practice and under standing of tight sandstone gas reservoirs in western Sichuan[J]. Natural Gas Geoscience, 2016, 27(7): 1352-1360.
21 王伟东, 彭军, 段冠一, 等. 致密砂岩气藏储层研究的进展及趋势[J]. 油气地球物理, 2012, 10(4): 33-38.
WANG W D, PENG J, DUAN G Y,et al. The research progress and trend of tight sandstone gas reservoir[J]. Oil and Gas Geophysics, 2012, 10(4): 33-38.
22 邹才能, 陶士振, 侯连华. 非常规油气地质[M]. 北京: 地质出版社, 2013.
ZOU C N, TAO S Z, HOU L H. Unconventional Petroleum Geology[M]. Beijing: Geological Publishing House, 2013.
23 樊然学. 川西坳陷中段气藏天然气形成、运移的碳同位素地球化学证据[J]. 自然科学进展, 1999, 9(12):1126-1132.
FAN R X. Carbon isotope geochemical evidence of nature gases formation and migration in the middle of West Sichuan Depression[J]. Progress in Natural Science, 1999, 9(12): 1126-1132.
24 王玲辉, 沈忠民, 赵虎. 川西坳陷中段天然气碳同位素特征及其成因类型[J]. 物探与化探技术, 2008, 30(4): 326-330.
WANG L H, SHEN Z M, ZHAO H. Carbon isotope features and genetic type of natural gas in the middle section of Western Sichuan Depression[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2008, 30(4): 326-330.
25 唐艳, 叶军. 轻烃指纹参数在川西坳陷天然气成藏研究中的应用[J]. 油气地质与采收率, 2001, 8(4): 17-21.
TANG Y, YE J. Application of light ends finger print coefficient to natural gas reservoir forming research of depression in the west of Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(4): 17-21.
26 鲍典, 沈忠民, 罗小平, 等. 川西坳陷天然气C4—C7烃类指纹特征及在成藏研究中的意义[J]. 物探与化探技术, 2008, 30(2): 113-116.
BAO D, SHEN Z M, LUO X P, et al. The characteristics of natural gas C4-C7fingerprint in the Western Sichuan Depression and its implications for gas reservoir formation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2008, 30(2): 113-116.
27 沈忠民, 王鹏, 刘四兵, 等. 川西拗陷中段天然气轻烃地球化学特征[J]. 成都理工大学学报:自然科学版,2011,38(5): 500-506.
SHEN Z M, WANG P, LIU S B, et al. Geochemical characteristics of light hydrocarbon in coal-derived gas: A case study of Sichuan Basin[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2011,38(5):500-506.
28 顾战宇.制约川西致密砂岩气藏高效开发主要因素探讨——以新场气田浅、中储层特征为例[J].石油天然气学报, 2005,27(4): 112-114.
GU Z Y. Discussion on the main factors restricting the efficient development of tight sandstone gas reservoirs in west Sichuan[J].Journal of Oil and Gas Technology,2005,27(4):112-114.
29 郭迎春, 庞雄奇, 陈冬霞, 等. 川西坳陷中段陆相地层压力演化及其成藏意义[J]. 石油勘探与开发, 2012, 39(4): 426-433.
GUO Y C, PANG X Q, CHEN D X, et al. Evolution of continental formation pressure in the middle part of the Western Sichuan Depression and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2012, 39(4): 426-433.
30 沈忠民, 刘涛, 吕正祥, 等. 川西坳陷侏罗系天然气气源对比研究[J].高校地质学报, 2008, 14(4): 577-582.
SHEN Z M, LIU T, LV Z X, et al. A comparison study on the gas source of Jurassic natural gas in the Western Sichuan Depression[J]. Geological Journal of China Universities, 2008, 14(4): 577-582.
31 蒋启贵,张志荣,宋晓莹,等.轻烃指纹分析及其应用[J].地质科技情报, 2005,24(1):61-64.
JIANG Q G, ZHANG Z R, SONG X Y, et al. Analysis of light hydrocarbon fingerprints and its application[J]. Gelogical Science and Technology Information, 2005,24(1):61-64.
32 蒋启贵, 李志明, 张彩明, 等.东营凹陷烃源岩轻烃特征[J].地质科技情报, 2008,27(5):87-91.
JIANG Q G, LI Z M, ZHNAG C M, et al. Characteristics of light hydrocarbons of source rocks in Dongying Depression[J]. Geological Science and Technology Information, 2008,27(5):87-91.
33 戴金星. 各类烷烃气的鉴别[J]. 中国科学,B辑, 1992,22(2): 185-193.
DAI J X. Identification of various types of alkanes[J]. Science China Press: Series B,1992, 22(2): 185-193.
34 杨见, 张敏, 陈晓娜. 川西坳陷上三叠统须一段烃源岩地球化学特征分析[J]. 长江大学学报:自然科学版,2012,9(12):41-43.
YANG J,ZHANG M,CHEN X N. Identification of Xu1 Member as main source rock in Upper Triassic from West Sichuan Depression[J]. Journal of Yangtze University: Natural Science Edition, 2012,9(12):41-43.
35 沈忠民, 潘中亮, 吕正祥, 等. 川西坳陷中段须家河组天然气地球化学特征与气源追踪[J]. 成都理工大学学报:自然科学版,2009,36(3):225-230
SHEN Z M, PAN Z L, LV Z X, et al. The geochemical characteristics of natural gas and the gas-sources tracing of Xujiahe Formation in the middle member of West Sichuan Depression[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2009, 36(3):225-230.
36 何心贵, 杨先利. 川西坳陷中段陆相天然气源岩追踪[J]. 天然气工业, 2002,8(3): 14-17.
HE X G, YANG X L. Trailing research on the continental gas source rock in the section of West Sichuan Depression[J]. Natural Gas Industry, 2002,8(3): 14-17.
37 黄志龙,柳广弟,郝石生. 东方1-1气田天然气运移地球化学特征[J]. 沉积学报,1997,15(2):66-69.
HUANG Z L, LIU G D, HAO S S. Geochemical characteristics of the natural gas migration in the Dongfang1-1 Gas Field, South China Sea[J]. Acta Sedimentologica Sinica, 1997,15(2):66-69.
38 李广之, 吴向华. 异构比φiC4nC4和φiC5nC5的石油地质意义[J]. 物探与化探, 2002,26(2): 135-139.
LI G Z, WU X H. The petroleum geological significance of somerization rates φiC4nC4和φiC5nC5[J]. Geophysical & Geochemical Exploration, 2002, 26(2): 135-139.
39 陈安定, 李剑锋. 天然气运移的地球化学指标研究[J]. 天然气地球科学, 1994,5(4): 38-67.
CHEN A D, LI J F. Study on geochemical index during natural gas migration[J]. Natural Gas Geoscience, 1994, 5(4): 38-67.
40 杨威, 魏国齐, 李跃纲, 等. 川西地区须家河组二段储层发育的主控因素和致密化时间探讨[J]. 天然气地球科学, 2008, 19(6): 796-800.
YANG W, WEI G Q,LI Y G, et al. Main controlling factorsand densification periods of the reservoir development of Xuji-ahe Formation second member, western Sichuan[J]. Natural Gas Geoscience, 2008, 19(6): 796-800.
41 王金琪. 早聚晚藏——川西坳陷天然气基本特征[J]. 天然气工业, 2001,21(1): 5-12.
WANG J Q. Early accumulation and late seal:The basic character of gas reservoirs in West Sichuan Depression[J].Natural Gas Industry, 2001,21(1): 5-12.
42 刘树根, 李国蓉, 李巨初, 等. 川西前陆盆地流体的跨层流动和天然气爆发式成藏[J]. 地质学报, 2005, 79(5): 690-699.
LIU S G, LI G R, LI J C, et al. Fluid cross formation flow and gas explosion accumulation in western Sichuan Foreland Basin,China[J].Acta Geologica Sinica,2005,79(5):690-699.
43 刘文汇, 王晓锋, 腾格尔, 等. 中国近十年天然气示踪地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 279-289.
LIU W H, WANG X F, TENG G E, et al. Progress of natural gas tracing geochemistry in China in recent ten years[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(3):279-289.
[1] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[2] Xiaoqi WU, Yingbin CHEN, Yanqing WANG, Huasheng ZENG, Xiaoqiong JIANG, Ye HU. Geochemical characteristics of natural gas in tight sandstone of the Chengdu large gas field, Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1107-1116.
[3] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[4] Jin LI,Jian LI,Chao WANG,Dejiang LI,Zhongxi HAN,Haizu ZHANG,Hui ZHOU,Yuhong LU,Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[5] Zengye XIE,Chunlong YANG,Jian LI,Lu ZHANG,Jianying GUO,Hui JIN,Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[6] Aisheng HAO,Jian LI,Jianying GUO,Hao WU,Qigui RAN,Zhisheng LI,Xuening QI,Lu ZHANG,Xiaobo WANG. Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan-Hami Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1212-1222.
[7] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[8] Zhuo WEN, Yong-shang KANG, Liu-xu KANG, Jun LI, Qun ZHAO, Hong-yan WANG. Geological evaluation indexes and lowest limit standards for selection of shale gas industrial construction areas: Case study of X block in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(7): 950-960.
[9] Wei YANG, Man-cang LIU, Guo-qi WEI, Hui JIN, Wu-ren XIE, Sai-jun WU, Nan SU, Qiu-ying ZHU, Cui-guo HAO, Xiao-dan WANG. Sedimentary characteristics and sequence lithofacies paleogeography of the semi-closed carbonate platform of the Leikoupo Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 781-793.
[10] Yi LIN, Cong CHEN, Shi-yu XU, Fan YANG, Yi-yang ZENG, Yang LI, Chun-ni ZHAO, Jing YANG, Kai-lai HE. Characteristics and formation mechanism of ultra-deep carbonate reservoirs in the Devonian Guanwushan Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 794-805.
[11] Rong LI, Cheng-peng SU, Guo-shan SHI, Huo-fu JIA, Su-hua LI, Yang YU. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 806-815.
[12] Jun-jun CAI, Xian PENG, Qian LI, Tian-hui ZHAN, Zhan-mei ZHU, Wen LI, Xiao-fei GAN, Zhuang DENG, Jia-shu WANG. Subdivision of strongly heterogeneous carbonate gas reservoir and technical countermeasures in different production stages: Case study of Sinian in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 851-860.
[13] Guang-rong ZHANG, Hai-kuan NIE, Xuan TANG, Dong-hui LI, Chuan-xiang SUN, Pei-xian ZHANG. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore:Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(6): 888-898.
[14] Yun-yan NI, Li-miao YAO, Feng-rong LIAO, Jin-liang GAO, Jian-ping CHEN, Jian-li SUI, Di-jia ZHANG. Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(4): 492-509.
[15] Guo-yi HU, Fei HE, Jing-kui MI, Yi-lin YUAN, Jin-hao GUO. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 319-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 1998, 9(2): 1 -6 .
[2] HU Zhong-gui,HU Ming-yi,LIAO Jun3,LIU Dong-xi,CAI Quan-sheng,WANG Dan. Sedimentary Facies and Evolution Model of Reef Deposition in Jiannan Area of Western Hubei[J]. Natural Gas Geoscience, 2014, 25(7): 980 -990 .
[3] BAI Yun-lai, MA Yu-hu, HUANG Yong, LIU Xiao-guang. Sedimentary Characteristics and Hydrocarbon Exploration Implications on theCambrian Aulacogen of the Southern Ordos Continental Margin, North China[J]. Natural Gas Geoscience, 2014, 25(11): 1706 -1717 .
[4] Zhang Guang-quan,Hu Xiang-yang,Sun Bing,Jia Yue-wei. Sedimentary characteristics and controlling factors of gas condensate reservoir of Ying Ⅳ formation in Longfengshan Gasfield,Songliao Basin,China[J]. Natural Gas Geoscience, 2017, 28(4): 502 -513 .
[5] Qian Kai, Sun Xiao-hui, Xu Xiao-qiong, Han Rong-hua, Fan Yun, Wei Xing, Chang Xin-ling, Ren Zhu-lin, Cui Ya-ya. Petroleum geology,hydrocarbon distribution and accumulation fairway study in the Lower Indus Basin[J]. Natural Gas Geoscience, 2017, 28(12): 1797 -1809 .
[6] Deng Yan, Hu Guo-yi, Zhao Chang-yi. Geochemical characteristics and origin of natural gas in Changxing-Feixianguan Formations from Longgang Gasfield in the Sichuan Basin,China[J]. Natural Gas Geoscience, 2018, 29(6): 892 -907 .
[7] Chun-lin Zhang, Jian Li, Xin Chen, Qing-chao Wu. Palaeogeomorphological restoration of Ordovician subsalt and its controlling effect on beach bodies, eastern Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(9): 1263 -1271 .
[8] Zhou YU, Jin-gao ZHOU, Zhen-chun DING, Liu-bin WEI, Yuan WEI, Xin-ning WU, Dong-xu WU, Shao-yi WANG, Wei-ling LI. Reservoir characteristics and genesis of O1m54-1a in the central and eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(5): 686 -697 .
[9] Ling FU,Jian-zhong LI,Wang-lin XU,Wei GUO,Ning-xi LI,Yue-qiao ZHANG,Wei SONG,Yuan-shi SUN. Characteristics and main controlling factors of Ordovician deep subsalt reservoir in central and eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(11): 1548 -1561 .
[10] . 2021-2025 is a period of great development of China's natural gas industry:Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China[J]. Natural Gas Geoscience, 2021, 32(1): 1 -16 .