Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (8): 1107-1116.doi: 10.11764/j.issn.1672-1926.2021.02.001

Previous Articles     Next Articles

Geochemical characteristics of natural gas in tight sandstone of the Chengdu large gas field, Western Sichuan Depression, Sichuan Basin

Xiaoqi WU1,2(),Yingbin CHEN1,2,Yanqing WANG1,2,Huasheng ZENG2,Xiaoqiong JIANG2,Ye HU1,2   

  1. 1.Research Center of Exploration and Development in Sichuan Basin,Research Institute of Petroleum Exploration and Production,SINOPEC,Chengdu 610041,China
    2.Wuxi Research Institute of Petroleum Geology,Research Institute of Petroleum Exploration and Production,SINOPEC,Wuxi 214126,China
  • Received:2020-12-16 Revised:2021-01-23 Online:2021-08-10 Published:2021-08-25
  • Supported by:
    The National Natural Science Foundation of China(41872122);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010402)

Abstract:

The Western Sichuan Depression is one of the important exploration areas in the Sichuan Basin for SINOPEC, and natural gas exploration in terrigenous tight sandstone in the area has achieved great breakthrough in recent years. The Chengdu large gas field has been discovered in the main reservoirs of Upper Jurassic tight sandstone, however, few geochemical proofs have been provided to support the understanding of gas source and regional difference of natural gas. Studies on the geochemical characteristics indicate that, the Jurassic tight gas in the Chengdu large gas field has a dryness coefficient (C1/C1-5) of 0.939~0.982, and the δ13C1, δ13C2, and δD1 values are in the ranges from -33.7‰ to -30.7‰, -25.4‰ to -22.3‰, and -162‰ to -153‰, respectively, with positive carbon and hydrogen isotopic series of gaseous alkanes. The Jurassic tight gas is typically coal-derived gas as indicated by both carbon and hydrogen isotopic compositions. The calculated vitrinite reflectance (RO)values according to the two-stage fractionation model of coal-derived gas are consistent with the measured RO values of source rocks of 5th Member of Xujiahe Formation, which are demonstrated as the main source of the Jurassic tight gas. Effective source rocks are rarely developed in the Lower Jurassic Baitianba Formation of the study area, which is considered to have unsignificant contribution to the Jurassic gas reservoirs. The Jurassic natural gas from different gas fields in the Western Sichuan Depression displays different geochemical characteristics according to the effect of different gas source and accumulation processes.

Key words: Western Sichuan Depression, Chengdu Gas Field, Tight sandstone gas, Geochemical characteristics, Thermal maturity

CLC Number: 

  • TE122.1+13

Fig. 1

Distribution of tectonic units in the Western Sichuan Depression and the location of the Chengdu Gas Field"

Fig.2

Stratigraphic column of the Jurassic in the Western Sichuan Depression (modified from YANG et al.[20])"

Table 1

Chemical and stable carbon and hydrogen isotopic compositions of the Jurassic tight sandstone gas in the Chengdu Gas Field"

井号层位组分/%C1/C1-5δ13C/‰δD/‰RO/%①RO/%②RO/%③
CH4C2H6C3H8C4H10C5H12N2CO2δ13C1δ13C2δ13C3δD1δD2
MB2J3p96.302.080.380.180.050.680.270.973-30.7-23.5-20.6n.d.n.d.1.841.530.65
MP13J3p93.534.140.920.330.090.900.945-33.5-22.3-19.4n.d.n.d.1.151.140.40
MP46J3p94.603.050.680.270.081.220.030.959-31.1-25.4-21.0-153-1091.701.460.60
SF10J3p95.812.270.490.210.071.040.090.969-32.1-25.0-22.5-162-1361.451.320.51
SF16J3p93.572.480.450.160.033.250.070.968-32.5-24.7-21.7-161-1471.361.270.48
SF17J3p94.812.230.440.160.031.840.140.971-32.3-23.4-20.8-156-1381.411.290.49
SF17J3p95.322.240.450.160.031.730.070.971-31.9-23.8-20.7-155-1371.501.350.53
SF20J3p94.242.490.510.190.071.640.140.967-33.1-25.0-22.0-159-1381.231.190.43
SF9J3p96.801.290.350.120.001.340.090.982-33.0-24.7-25.2-162-1351.251.200.44
GJ6J3p94.632.780.380.060.001.930.150.967-31.8-24.1-22.5-159-1301.531.360.54
JP7J3p93.713.490.710.310.111.270.230.953-33.7-22.9-20.4n.d.n.d.1.111.120.39
MS1J2s93.783.670.930.410.140.9600.948-33.5-23.8-19.8-164-1321.151.140.40
MS1J2s92.014.241.050.480.161.610.130.939-32.7-24.7-21.6-164-1351.321.240.46

Table 2

TOC distribution of the Lower Jurassic Baitianba Formation mudstone in the Western Sichuan Depression"

构造单元井号最小值/%最大值/%平均值/%

样品数

/个

TOC≥0.5%

样品数

达标率/%
成都凹陷XF10.043.680.768225
L6511.193.762.666100
DY10.030.090.04700
MS10.030.670.159111.1
中江—回龙构造带CJ5660.061.870.5510440
新场构造带X50.032.240.639444.4
XC260.050.090.07500
XC310.070.170.11400
XS10.040.980.328112.5
GM20.030.190.08900
FG210.031.280.2219315.8

Table 3

Vitrinite reflectance (RO) of terrigenous source rocks in the Chengdu Sag"

气田井号层位深度/m岩性平均RO/%测点数离差/%
成都DY1T3x53 515黑色泥岩1.14480.05
T3x53 627黑色炭质泥岩1.32450.09
T3x53 905黑色泥岩1.37290.14
T3x44 155黑色炭质泥岩1.43160.06
T3x34 738黑色泥岩1.50230.05
T3x35 130黑色泥岩1.57340.12
T3x25 735黑色泥岩1.81210.09
洛带L651J1b2 936深灰色泥岩1.01460.08
J1b3 014深灰色泥岩1.06490.09
LS1T3x53 443.5黑色炭质泥岩1.39230.07
T3x43 740黑色泥岩1.42260.07
T3x34 114.5黑色泥岩1.56170.06
T3x24 246.69黑色泥岩1.58400.09

Fig.3

Correlation diagram between dryness coefficient (C1/C1-5) and CH4% of the Jurassic tight sandstone gas in the Chengdu Gas Field(data source: Xinchang according to WU et al.[14]; Xindu and Luodai according to DAI et al.[23])"

Fig.4

Correlation diagram between δ13C1 and δ13C2 values of the Jurassic tight sandstone gas in the Chengdu Gas Field (kerogen type II in the Delaware and Val Verde basins and kerogen type III in the Sacramento Basin according to ROONEY et al.[28] and JENDEN et al.[29], respectively. data source: Xinchang according to WU et al.[14]; Xindu and Luodai according to DAI et al.[23])"

Fig.5

Cross plot of δD1 versus δ13C1 of the Jurassic tight sandstone gas in the Chengdu Gas Field (oil type gas in the Delaware and Val Verde basins and coal-derived gas in northwestern Germany according to SCHOELL[30];data source: Xinchang according to WU et al.[14]; Xindu and Luodai according to DAI et al.[23])"

Fig.6

Correlation diagram between C1/C2+3 and δ13C1 values of the Jurassic tight sandstone gas in the Chengdu Gas Field (base map according to BERNARD et al.[31];data source: Xinchang according to WU et al.[14]; Xindu and Luodai according to DAI et al.[23])"

Fig. 7

Correlation diagram between δ13C1-δ13C2 and Ln(C1/C2) of the Jurassic tight sandstone gas in the Western Sichuan Depression(base map according to PRIN-ZHOFER et al.[39]; data source: Xinchang according to WU et al.[14]; Xindu and Luodai according to DAI et al.[23])"

1 戴金星, 倪云燕, 胡国艺, 等. 中国致密砂岩大气田的稳定碳氢同位素组成特征[J]. 中国科学:地球科学, 2014, 44(4): 563-578.
DAI J X, NI Y Y, HU G Y, et al. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China[J]. Science China: Earth Science, 2014,44(4):563-578.
2 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3): 257-264.
DAI J X, NI Y Y, WU X Q. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257-264.
3 位云生, 贾爱林, 郭智, 等. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
WEI Y S, JIA A L, GUO Z, et al. Optimal deployment of multi-stage fractured horizontal wells in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2019, 30(6): 919-924.
4 李勇, 陈世加, 路俊刚, 等. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
LI Y, CHEN S J, LU J G, et al. Main controlling factors of near-source and interbedded-accumulation tight sandstone gas from coal-bearing strata: A case study from natural gas of Xujiahe Formation, central Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(6): 798-808.
5 谢刚平, 朱宏权, 叶素娟, 等. 四川盆地叠覆型致密砂岩气区地质特征与评价方法[M]. 北京: 科学出版社, 2018: 1-269.
XIE G P, ZHU H Q, YE S J, et al. Geological Features and Evaluation Methods of Superimposed Tight Sandstone Gas-Bearing Area in the Sichuan Basin[M].Beijing:Science Press, 2018: 1-269.
6 赵正望, 唐大海, 王小娟, 等. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
ZHAO Z W, TANG D H, WANG X J, et al. Discussion on main controlling factors of natural gas enrichment and high yield in tight sandstone gas reservoirs:Case study of Xujiahe Formation in Sichuan Basin[J].Natural Gas Geoscience,2019, 30(7): 963-972.
7 吴小奇, 黄士鹏, 廖凤蓉, 等. 四川盆地须家河组和侏罗系煤成气碳同位素组成[J]. 石油勘探与开发, 2011, 38(4): 418-427.
WU X Q, HUANG S P, LIAO F R, et al. Carbon isotopic compositions of coal-derived gas in the Xujiahe Formation and Jurassic in the Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(4): 418-427.
8 WU X Q, HUANG S P, LIAO F R, et al. Carbon isotopic characteristics of Jurassic alkane gases in the Sichuan Basin, China[J]. Energy Exploration & Exploitation, 2010, 28(1): 25-36.
9 李书兵, 胡昊, 宋晓波, 等. 四川盆地大型天然气田形成主控因素及下一步勘探方向[J]. 天然气工业, 2019, 39(增刊1): 1-8.
LI S B, HU H, SONG X B, et al. Main controlling factors of large gas fields in the Sichuan Basin and next exploration direction[J]. Natural Gas Industry, 2019, 39(supplement 1):1-8.
10 胡向阳, 李宏涛, 史云清, 等. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布——以什邡地区Jp23砂组为例[J]. 天然气地球科学, 2018, 29(4): 468-480.
HU X Y, LI H T, SHI Y Q, et al. Sedimentary characteristics and reservoirs distribution from Penglaizhen Formation 3rd member in slope belt of Western Sichuan Depression: A case study of Jp23 sandstone group from Shifang area[J]. Natural Gas Geoscience, 2018, 29(4): 468-480.
11 刘君龙, 纪友亮, 杨克明, 等. 川西地区中侏罗世前陆盆地河流层序结构及控制因素[J]. 天然气地球科学, 2017, 28(1): 14-25.
LIU J L, JI Y L, YANG K M, et al. Sequence architecture and its controlling factors of Middle Jurassic fluvial successions in western Sichuan Foreland Basin[J].Natural Gas Geoscience, 2017, 28(1): 14-25.
12 赵双丰, 张枝焕, 李文浩, 等. 川西坳陷什邡地区蓬莱镇组天然气藏特征及成藏过程分析[J]. 中国地质, 2015, 42(2): 515-524.
ZHAO S F, ZHANG Z H, LI W H, et al. Accumulation process and characteristics of gas reservoirs in the Penglaizhen Formation of Shifang area, Western Sichuan Depression[J]. Geology in China, 2015, 42(2): 515-524.
13 叶素娟, 朱宏权, 李嵘, 等. 天然气运移有机—无机地球化学示踪指标——以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 2017, 44(4): 549-560.
YE S J, ZHU H Q, LI R, et al. Tracing natural gas migration by integrating organic and inorganic geochemical data: A case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration & Development, 2017, 44(4): 549-560.
14 WU X Q, LIU Q Y, LIU G X, et al. Geochemical characteristics and genetic types of natural gas in the Xinchang Gas Field, Sichuan Basin, SW China[J]. Acta Geologica Sinica:English Edition, 2017, 91(6): 2200-2213.
15 DAI J X, NI Y Y, ZOU C N, et al. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin, SW China[J]. Organic Geochemistry, 2009, 40(5): 638-646.
16 罗啸泉, 张箭, 卜淘. 川西坳陷洛带地区遂宁组气藏成藏模式[J]. 天然气工业, 2007, 27(3): 13-16.
LUO X Q, ZHANG J, BU T. Reservoiring pattern of Suining Formation gas pool in Luodai area of the Western Sichuan Depression[J]. Natural Gas Industry, 2007, 27(3): 13-16.
17 陈佩佩, 胡望水, 周钱山, 等. 四川盆地什邡—德阳—广金地区蓬莱镇组致密气藏特征[J]. 科学技术与工程, 2014, 14(22): 164-168, 175.
CHEN P P, HU W S, ZHOU Q S, et al. Tight gas reservoir characteristics of Penglaizhen Formation in Shifang-Deyang-Guangjin areas of Sichuan Basin[J]. Science Technology and Engineering, 2014, 14(22): 164-168, 175.
18 秦胜飞, 戴金星, 王兰生. 川西前陆盆地次生气藏天然气来源追踪[J]. 地球化学, 2007, 36(4): 368-374.
QIN S F, DAI J X, WANG L S. Different origins of natural gas in secondary gas pool in western Sichuan foreland basin[J]. Geochimica, 2007, 36(4): 368-374.
19 吴小奇, 王萍, 刘全有, 等. 川西坳陷新场气田上三叠统须五段天然气来源及启示[J]. 天然气地球科学, 2016, 27(8): 1409-1418.
WU X Q, WANG P, LIU Q Y, et al. The source of natural gas reservoired in the 5th member of the Upper Triassic Xujiahe Formation in Xinchang Gasfield, the Western Sichuan Depression and its implication[J]. Natural Gas Geoscience,2016, 27(8): 1409-1418.
20 杨克明, 朱宏权, 叶军, 等. 川西致密砂岩气藏地质特征[M]. 北京: 科学出版社, 2012: 1-400.
YANG K M, ZHU H Q, YE J, et al. Geological Features of Tight Sandstone Gas Reservoir in the western Sichuan Area[M]. Beijing: Science Press, 2012: 1-400.
21 王鹏, 刘四兵, 沈忠民, 等. 地球化学指标示踪天然气运移机理及有效性分析——以川西坳陷侏罗系天然气为例[J]. 天然气地球科学, 2015, 26(6): 1147-1155.
WANG P, LIU S B, SHEN Z M, et al. Mechanism and effectiveness of geochemical index trace natural gas migration: A case study of Jurassic natural gas in Western Sichuan Depression[J]. Natural Gas Geoscience, 2015, 26(6): 1147-1155.
22 秦胜飞, 陶士振, 涂涛, 等. 川西坳陷天然气地球化学及成藏特征[J]. 石油勘探与开发, 2007, 34(1): 34-38.
QIN S F, TAO S Z, TU T, et al. Characteristics of natural gas geochemistry and accumulation in Western Sichuan Depression[J]. Petroleum Exploration and Development, 2007, 34(1): 34-38.
23 DAI J X, NI Y Y, ZOU C N. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin,China[J]. Organic Geochemistry, 2012, 43(1): 103-111.
24 陈迎宾, 王彦青, 胡烨. 川西坳陷中段侏罗系气藏特征与富集主控因素[J]. 石油实验地质, 2015, 37(5): 561-565.
CHEN Y B, WANG Y Q, HU Y. Characteristics and main factors controlling the Jurassic gas reservoirs in the middle section of the Western Sichuan Depression[J]. Petroleum Geology & Experiment, 2015, 37(5): 561-565.
25 戴金星, 宋岩, 关德师, 等. 煤成气地质研究[M]. 北京: 石油工业出版社, 1987: 156-170.
DAI J X, SONG Y, GUAN D S, et al. Geological Study of Coal-Formed Gas[M]. Beijing: Petroleum Industry Press, 1987:156-170.
26 刘文汇, 徐永昌. 煤型气碳同位素演化二阶段分馏模式及机理[J]. 地球化学, 1999, 28(4): 359-365.
LIU W H, XU Y C. A two-stage model of carbon isotopic fractionation in coal-gas[J].Geochimica,1999,28(4):359-365.
27 STAHL W J. Carbon and nitrogen isotopes in hydrocarbon research and exploration[J].Chemical Geology,1977,20:121-149.
28 ROONEY M A, CLAYPOOL G E, MOSES CHUNG H. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3-4): 219-232.
29 JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento Basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453.
30 SCHOELL M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5): 649-661.
31 BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54.
32 戴金星, 秦胜飞, 陶士振, 等. 中国天然气工业发展趋势和天然气地学理论重要进展[J]. 天然气地球科学, 2005, 16(2): 127-142.
DAI J X, QIN S F, TAO S Z, et al. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China[J]. Natural Gas Geoscience, 2005, 16(2): 127-142.
33 廖凤蓉,于聪,吴伟,等.四川盆地中坝气田天然气碳、氢同位素特征及气源探讨[J]. 天然气地球科学,2014,25(1):79-86.
LIAO F R, YU C, WU W, et al. Stable carbon and hydrogen isotopes of natural gas from the Zhongba Gasfield in the Sichuan Basin and implication for gas-source correlation[J]. Natural Gas Geoscience, 2014, 25(1): 79-86.
34 吴小奇, 陈迎宾, 赵国伟, 等. 四川盆地川西坳陷新场气田上三叠统须家河组五段烃源岩评价[J]. 天然气地球科学, 2017, 28(11): 1714-1722.
WU X Q, CHEN Y B, ZHAO G W, et al. Evaluation of source rocks in the 5th member of the Upper Triassic Xujiahe Formation in the Xinchang Gas Field, the Western Sichuan Depression,China[J].Natural Gas Geoscience,2017, 28(11): 1714-1722.
35 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,1993,4(2-3):1-40.
DAI J X. Carbon and hydrogen isotopic characteristics and identification of various natural gases[J]. Natural Gas Geoscience,1993,4(2-3):1-40.
36 吴小奇, 倪春华, 陈迎宾, 等. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
WU X Q, NI C H, CHEN Y B, et al. Source of the Upper Paleozoic natural gas in the Dingbei area, Ordos Basin[J]. Natural Gas Geoscience, 2019,30(6): 819-827.
37 LIU Q Y, DAI J X, LI J, et al. Hydrogen isotope composition of natural gases from the Tarim Basin and its indication of depositional environments of the source rocks[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 300-311.
38 LIU Q Y, WU X Q, WANG X F, et al. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas[J]. Earth-Science Reviews, 2019, 190: 247-272.
39 PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Che-mical Geology, 1995, 126(3-4): 281-290.
[1] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[2] Hailiang LIU,Sibing LIU,Dong ZHOU,Wen LIU,Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[3] Jin LI,Jian LI,Chao WANG,Dejiang LI,Zhongxi HAN,Haizu ZHANG,Hui ZHOU,Yuhong LU,Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[4] Aisheng HAO,Jian LI,Jianying GUO,Hao WU,Qigui RAN,Zhisheng LI,Xuening QI,Lu ZHANG,Xiaobo WANG. Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan-Hami Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1212-1222.
[5] Linghui CAI,Ye YU,Jianhua GUO,Yanran HUANG,Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province [J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
[6] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[7] Xun GONG, Hong-hui LI, Jun-long ZHANG, Yan-bin WANG, Zhao-hui XU, Shi-hu ZHAO, Lian-bin QIN. Characteristics of the Lower Cambrian shale and optimization of favorable shale gas areas in Tadong area [J]. Natural Gas Geoscience, 2021, 32(6): 899-913.
[8] Qing-chang RAN, Shu-ming CHEN, Xiang ZHOU. Geochemical characteristics and enrichment regularity of deep gas in Xingshan Sag, Songliao Basin [J]. Natural Gas Geoscience, 2021, 32(5): 727-737.
[9] Xiao-qi WU, Ying-bin CHEN, Chang-bo ZHAI, Xiao-jin ZHOU, Wen-hui LIU, Jun YANG, Xiao-bo SONG. Gas source and exploration direction of the Middle Triassic Leikoupo Formation in the Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1204-1215.
[10] Ping GUO. Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1306-1315.
[11] Yong HU, Qing-yan MEI, Ji-ping WANG, Ying-li CHEN, Xuan XU, Chun-yan JIAO, Chang-min GUO. Optimization of well pattern infilling in tight sandstone gas reservoir [J]. Natural Gas Geoscience, 2020, 31(9): 1326-1333.
[12] Qi LI, Shu-sheng GAO, Hua-xun LIU, Li-you YE, Hong-hui WU, Wen-qing ZHU, Jie ZHANG, Yi YANG, Mao-hong YANG. Well network densification and recovery evaluation of tight sandstone gas reservoirs [J]. Natural Gas Geoscience, 2020, 31(6): 865-876.
[13] Dian-wei ZHANG, Zhi-liang HE, Gan-lu LI. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 428-435.
[14] Sen WANG, Ming-zhen ZHANG, Ai-jing LI, Jing ZHANG, Zhen DU, Bao-xia DU, Li-min JI, Xian-wen ZHANG. Organic geochemical characteristics of Qingtujing Formation coal⁃measure source rocks in the Chaoshui Basin and Minhe Basin, and their hydrocarbon⁃generation significances [J]. Natural Gas Geoscience, 2020, 31(2): 282-294.
[15] Zhi-yang GUO,Hua LIU,Bin CHENG,Gui-li YANG,Hao-qing XU,Zhi-qing ZHANG. Characteristics and source of oils and gases in Chengdao-Zhuangxi buried-hill, Jiyang Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(10): 1437-1452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . DISCUSSION OF THE DOWN-WARPED SETTING BASIN:TAKING CHAIDAMU BASIN AS AN EXAMPLE[J]. Natural Gas Geoscience, 2004, 15(4): 395 -400 .
[2] ZHANG Li-juan, HAN Jie, SUN Yu-shan, CHENG Ming. SEDIMENTARY RESERVOIRS OF CARBONIFEROUS PEBBLY SANDSTONE IN TAZHONG 4 OILFIELD, TARIM BASIN[J]. Natural Gas Geoscience, 2007, 18(1): 50 -56 .
[3] . [J]. Natural Gas Geoscience, 1998, 9(2): 1 -6 .
[4] . [J]. Natural Gas Geoscience, 1999, 10(5): 23 -27 .
[5] WANG Yue-hua. THE USE OF RESERVOIR MODELING IN GAS RESERVOIR DESCRIPTION OF TUZILUOKE GAS FIELD[J]. Natural Gas Geoscience, 2003, 14(2): 145 -147 .
[6] WANG Shao-chang +1, FU Suo-tang +2, LI Xi-zhe +1, FU Jin-hua +2, SUN Fen-jin +1, JIANG Zheng-long +1. THE INFLUENCE TO THE ACCUMULATION OF OIL AND GAS, OF THEDEVELOPMENT OF THE ARCUATE STRUCTURE ZONE IN THE TRANSITION ZONE FRO M THE PLAT TO THE GEOSYNCLINE IN THE WEST OF ORDOS BASIN [J]. Natural Gas Geoscience, 2005, 16(4): 421 -427 .
[7] HUANG Yi;YANG Jun-yin;WU Tuo;WANG He. Distribution and Origin of Hydrogen Sulphide in Heavy Oil Block, Liaohe Oil-Field[J]. Natural Gas Geoscience, 2008, 19(2): 255 -260 .
[8] TANG You-Jun, WEN Zhi-Gang, ZHANG Chao-Mo, LI Jun, SHU Cui-Shan. Evaluation of Source Rock of Well Tian 2, Tiancao Sag of Yinggen-Ejinaqi Basin[J]. Natural Gas Geoscience, 2008, 19(4): 530 -536 .
[9] Zhang Shen,Tian Shi-cun,Guo Jian-yu,Xiao Fang-feng. Evaluation of Petroleum Exploration Potential in Ucayali Basin,Peru[J]. Natural Gas Geoscience, 2012, 23(2): 268 -278 .
[10] CHENG Qi-Gui, LEI Qi-Hong, XIONG Wei-Liang. Theory and Technology of Effective-Displacement-Pressure System of Tight Oil Reservoir[J]. Natural Gas Geoscience, 2012, 23(3): 570 -576 .