Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (6): 923-930.doi: 10.11764/j.issn.1672-1926.2021.01.014

Previous Articles    

Method and application of in-situ stress field to evaluate fault sealing of underground gas storage traps

Guang-quan ZHANG(),Da-qian ZENG,Zhao-wei FAN,Li-dong MI,Jun-fa ZHANG,Dan-dan WANG,Yue-wei JIA,Xiao-song YANG   

  1. SINOPEC Petroleum Exploration and Production Research Institute,Beijing 100083,China
  • Received:2020-10-13 Revised:2021-01-17 Online:2021-06-10 Published:2021-05-24
  • Supported by:
    The Project Group of SINOPEC Ministry of Science and Technology(p18096);Supported by National Natural Science Foundation of China(51804334)

Abstract:

At present, there are great differences in the evaluation methods of underground gas storage traps in different regions and types, especially in the aspect of fault dynamic sealing, there is no systematic and complete evaluation method and system. Based on the investigation of a large number of literatures on sealing evaluation of gas storage at home and abroad, combined with the sealing evaluation examples of 27 built gas storages in China, this paper puts forward a method to evaluate the dynamic sealing property of gas storage traps by using stress field. From the perspective of geomechanics, the dynamic sealing property of gas storage traps is evaluated by analyzing the change of stress field in the process of injection and production. Firstly, the in-situ stress parameters of single well are calculated, the current three-dimensional in-situ stress field is established, and the spatial distribution of principal stress and effective stress is analyzed. Secondly, the Coulomb failure criterion is used to judge the fault stability under the present in-situ stress state. Finally, the main purpose of this paper is to establish a three-dimensional numerical model to simulate the dynamic change of reservoir pressure and the cyclic pressure of gas injection reservoir. The process of dynamic change (effective stress) of in-situ stress caused by the change can be used to evaluate the stress risk of fault sealing. This method can be used to determine whether the gas storage can be operated safely under different injection production periods.

Key words: Underground gas storage, Trap sealing, In situ stress field, Pore pressure, Coupling model

CLC Number: 

  • TE121

Table 1

Calculation model of in-situ stress and rock mechanical parameters of single well in underground gas storage"

模型参数计算公式公式符号说明
上覆岩层压力σV=0Hρgdhρ为岩石密度,g/cm3;g为重力加速度,m/s2;h为垂深,m
地层孔隙压力Pp=σV-σV-PNCTxNCTxobs3.0PNCT为正常地层压力,MPa;xNCTxobs分别为正常压力和实际压力条件下的测井响应
最大水平主应力SHmax=K1×SV-Pp+PpK1为最大水平主应力有效应力比值,暂取0.43
最小水平主应力SHmin=K2×SV-Pp+PpK2为最小水平主应力有效应力比值,暂取0.62
砂岩单轴抗压强度UCSST=325??700×exp-0.037×DTCODTCO为声波时差,s/m
泥岩单轴抗压强度UCSSH=72.5×Vp2Vp为纵波速率,km/s
砂、泥岩动态弹性模量YMD=ρVs23Vp2-4Vs2/Vp2-Vs2VpVs分别为纵、横波速率,km/s
砂、泥岩静态弹性模量YMS=0.066×YMD1.632
动态泊松比PRD=Vp2-2Vs2/2Vp2-Vs2VpVs分别为纵、横波速率,km/s
伪密度DEN=0.23×1??000??000/DTCO0.25DTCO为声波时差,s/m

Fig.1

In situ stress model"

Fig.2

Stress distribution pattern of rock sample under triaxial compression"

Fig.3

Fault distribution of X underground gas storage"

Fig.4

Laboratory test results of faults of X underground gas storage"

Fig. 5

Calculation results of in-situ stress of Well X1"

Fig.6

3D geostress model of overlying formation pressure (SV) of X underground gas storage"

Fig.7

Parameter diagram of ground stress of F1 fault in X underground gas storage"

Fig.8

Stability of fault under current in-situ stress of X underground gas storage (Tau-ratio of foult F1)"

Fig.9

Stability of fault under maximum pore pressure predicted by underground gas storage"

Fig.10

Distribution of pore pressure at a certain time in the section"

Fig.11

Four dimensional dynamic stability analysis of fault"

1 DAVID A,LOCKNER,JAMES D,et al. An earthquake instability model based on faults containing high fluid-pressure compartments[J].Pure and Applied Geophysics Pageoph,1995, 145(3-4):717-745.
2 马新华,郑得文,申瑞臣,等. 中国复杂地质条件气藏型储气库建库关键技术与实践[J].石油勘探与开发,2018,45(3):489-499.
MA X H, ZHENG D W, SHEN R C, et al. Key technology and practice of gas reservoir construction in China with complex geological conditions[J]. Petroleum Exploration and Development,2018,45(3):489-499.
3 李如一. 断层圈闭封闭性综合判别方法及其应用[J]. 大庆石油地质与开发,2019,38(4):1-6.
LI R Y. Comprehensive discrimination method of fault trap sealing and its application[J]. Daqing Petroleum Geology and Development,2019,38(4):1-6.
4 孙莎莎,唐立根. 多周期交变载荷工况下地下储气库密封性评价[J].科学技术与工程,2016,6(6):23-28.
SUN S S, TANG L G. Sealing evaluation of underground gas storage under multi period alternating load condition[J]. Science and Technology and Engineering,2016,6(6):23-28.
5 彭平.储气库密封性评价体系的建立及初步应用[C]∥ 2017年全国天然气学术年会论文集.杭州:[出版者不详],2017:1717-1725.
PENG P. Establishment and Preliminary Application of Gas Storage Tightness Evaluation System[C]∥ Proceedings of 2017 National Natural Gas Academic Annual Meeting,Hangzhou:[s.n],2017:1717-1725.
6 朱海军. 断层封闭性研究现状与展望[J]. 科学集输与工程,2014,14(1):124-131.
ZHU H J.Current situation and prospect of fault sealing resea-rch[J].Scientific Gathering and Engineering,2014,14(1):124-131.
7 吕延防,王伟,胡欣蕾,等. 断层侧向封闭性定量评价方法[J].石油勘探与开发,2016,43(2) : 310-316.
LV Y F, WANG W, HU X L, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016,43(2) : 310-316.
8 付广,史集建,吕延防. 断层侧向封闭性定量研究方法的改进[J].石油学报,2012,33(3):414-418.
FU G,SHI J J, LV Y F. Improvement of quantitative research method of fault lateral sealing[J].Acta Petroleum Sinica,2012,33 (3): 414-418.
9 佐白科 M D.储层地质力学[M].石林,陈朝伟,刘玉石等译.北京:石油工业出版社,2012:56-63.
ZOBAIKE M D,Reservoir Geomechanics[M]. Translated by SHI L, CHEN C W, LIU Y S,et al. Beijing:Petroleum Industry Press,2012: 56-63.
10 张阳. 断层泥比率法在储气库断层侧向封闭[J].录井工程,2019,30(3):39-51 .
ZHANG Y. Fault gouge ratio method for lateral sealing of gas storage fault[J].Mud Logging Engineering,2019,30(3):39-51.
11 舒萍,高涛,王海燕,等. 大庆油田升平储气库盖层密封性划分标准及评价[J].大庆石油地质与开发,2019,38(5):1-5.
SHU P,GAO T, WANG H Y,et al. Classification standard and evaluation of seal property of Shengping gas storage reservoir in Daqing Oilfield[J]. Daqing Petroleum Geology and development,2019,38(5):1-5.
12 李国韬,刘在同,刘宁. 通过地下水文学研究评估含水层储气库盖层密封性[J].天然气勘探与开发,2018,41(3):90-94.
LI G T,LIU Z T,LIU N. Evaluation of seal property of aquifer gas storage reservoir caprock through groundwater literature research[J]. Natural Gas Exploration and Development, 2018,41(3):90-94.
13 丁国生. 枯竭气藏改建储气库需要关注的几个关键问题[J].天然气工业,2011,31(5):87-89.
DING G S. Several key issues in the reconstruction of depleted gas reservoir into gas storage[J]. Natural Gas Industry,2011,31(5):87-89.
14 李玥洋,田园媛,曹鹏,等. 储气库建设条件筛选与优化[J]. 西南石油大学学报:自然科学版,2013,35(5):123-129.
LI Y Y,TIAN Y Y,CAO P,et al.Screening and optimization of gas storage construction conditions[J].Journal of Southwest Pe-troleum University:Natural Science Edition,2013,35(5):123-129.
15 郑得文,胥洪成,王皆明,等.气藏型储气库建库评价关键技术[J].石油勘探与开发,2017,44(5):794-801.
ZHENG D W,XU H C,WANG J M,et al. Key technologies for construction and evaluation of gas reservoir type gas storage[J]. Petroleum Exploration and Development,2017,44(5):794-801.
[1] Qing-yan MEI, Cheng ZOU, Shan YANG, Sheng-lai YANG, Yi ZHAO, Wei ZHENG. The influence of pore structure and heterogeneity on development of carbonate gas reservoir [J]. Natural Gas Geoscience, 2020, 31(12): 1757-1765.
[2] Hong-cheng XU, Shi-jie ZHANG, Xiang LI, De-wen ZHENG, Jie-ming WANG, Li-na SONG, Kai ZHAO, Gen PEI, Zi-heng YIN. A new design method of minimum storage pressure of underground gas storage rebuilt from gas reservoir [J]. Natural Gas Geoscience, 2020, 31(11): 1648-1653.
[3] Zou Xian-jun, Chen Ya-lin. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model,Sichuan Basin [J]. Natural Gas Geoscience, 2018, 29(12): 1775-1780.
[4] Jin Feng-ming,Jia Shan-po,Zhang Hui,Lin Jian-pin,Shang Cui-juan,Liu Jing,Liu Tuan-hui,Zhao Zheng-jia,Xi Zeng-qiang. Evaluation system and optimization of aquifer exploration targets  for gas storage in the Beijing,Tianjin and Hebei faulted basins [J]. Natural Gas Geoscience, 2017, 28(9): 1433-1445.
[5] SONG Lian-teng,LIU Zhong-hua,LI Chao-liu,YUAN Chao. Logging Inversion Method Research of Pore Pressure Causes:A Case Study of Well Y [J]. Natural Gas Geoscience, 2015, 26(2): 371-376.
[6] WANG Jie-Ming, JIANG Feng-Guang. A METHOD FOR CALCULATING THE CAPACITY IN THE FRACTURING AND  WATER-BEARING STRUCTURE AS UNDERGROUND GAS STORAGE [J]. Natural Gas Geoscience, 2007, 18(5): 771-773.
[7] WANG Jie-ming,GUO Ping,JIANG Feng-guang. THE PHYSICAL SIMULATION STUDY ON THE GAS-DRIVE MULTIPHASE FLOW MECHANISM OF AQUIFER GAS STORAGE [J]. Natural Gas Geoscience, 2006, 17(4): 597-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!