Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (5): 754-763.doi: 10.11764/j.issn.1672-1926.2021.01.012

Previous Articles     Next Articles

Source, migration and detection of radon in natural gas

Yu-xiang DING1,2(),Guang-you ZHU2,Huai-shun ZHANG1,2,Yu-ping ZHOU1,Xiao-jie YAO1,Gao-en WU1,Shun-lin TANG1()   

  1. 1.Institute of Resources and Environment,Henan Polytechnic University,Jiaozuo 454000,China
    2.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • Received:2020-10-26 Revised:2021-01-10 Online:2021-05-10 Published:2021-04-27
  • Contact: Shun-lin TANG E-mail:2320797590@qq.com;tangshunlin@hpu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41573006)

Abstract:

Radon, a radioactive inert gas, is a direct daughter of radium, an intermediate product of the decay of uranium and thorium. Radon and its daughters enter the surface system with the extraction of natural gas, causing harm to equipment and human body. This paper introduces the source, harm, release mechanism, detection method and influencing factors of radon, and collects the content of radon in natural gas in some countries. With the continuous expansion of shale gas exploitation in recent years, radon in shale gas has been widely concerned. Radon levels in Marcellus shale gas in the northeastern United States are at 37-95 312 Bq/m3. At present, there is no systematic research on radon content in natural gas in China, and only relevant reports published around 1994. The average radon content in natural gas in China is similar to or slightly lower than the median radon content of natural gas in the world, but the indoor radon content may increase when domestic gas is used. The detection methods of radon in natural gas are summarized. It is suggested that the detection and research of radon in natural gas should be vigorously carried out, and the prevention and control of radon in natural gas should be strengthened.

Key words: Natural gas, Radon, Distribution and content, Detection method, Control measures

CLC Number: 

  • TE132

Fig.1

The decay chains of 238U, 232Th and 235U"

Fig.2

The mechanism of radon release"

Table 1

Radon levels in natural gas fields of each country"

国家检测点氡浓度/(Bq/m3)氡浓度均值(Bq/m3)数据来源
泰国陆上油气井354~1 222文献[42]
海上油气井16~197
美国宾夕法尼亚州Marcellus页岩37~5 920文献[43]
宾夕法尼亚州上泥盆统砂岩37~2 923
英国40~3 400170文献[44]
荷兰41~1 600
德国40~360
加拿大亚伯达省148~7 6002 300
安大略省150~3 000
波兰天然气管道30~425258文献[2]
中国

川东开发公司408.87~431.85215.82文献[38]
川西南矿区845.75~890.83
川西北矿区60.84~68.10
川南矿区325.89~352.87
川中矿区64.76~77.52

8-21井8~20109±96文献[39]
别左庄井47~99
南孟二厂井264~278
苏 桥 井124~142
京51号井71~114

Table 2

Radon content in shale gas in the United States"

气田研究位置氡浓度/(Bq/m3氡浓度均值/(Bq/m3数据来源
宾夕法尼州Marcellus页岩井口1 365.3~95 312(预测)文献[20]
井口3 515~3 885(预测)3 700文献[19]
井口1 332~4 070(预测)文献[21]
管道入口1 517~2 738文献[41]
生产气井、井口和气水分离器之间的阀门37~2 9231 369文献[43]
宾夕法尼亚州上泥盆统砂岩生产气井、井口和气水分离器之间的阀门259~2 4051 554文献[43]
科罗拉多州Denver Basin 砂岩水力压裂过程111文献[46]

Fig.3

Schematic diagram of potential migration and distribution of radon during shale gas exploitation(revised from Ref.[47])"

Table 3

The analytical methods of radon(revised from Refs.[53-54])"

方法测量方式采样或 测量时间涉及的 粒子类型探测器探测下限优点缺点
径迹蚀刻法累积30 d~1 aα粒子

聚碳酸酯膜

CR-39

2.1×

103 Bq·h/m3

操作及携带方便、价格低廉、适用于大规模长期测量测量周期长、低浓度测量离散度大

脉冲电离

室法

瞬时1~4 h电离室灵敏度高、稳定性好、可现场测得结果、时间灵活测量设备价格较高、对操作人员要求较高、 野外长时间测量需提供电力保障
连续2~7 d
静电收集法瞬时1~4 h半导体灵敏度高、稳定性好、现场能得到测量结果、能够得到氡浓度随时间的变换测量设备价格较高、对操作人员要求较高、 野外长时间测量需提供电力保障
连续2~7 d
闪烁室法瞬时~1 min闪烁室 (0.5 L)40 Bq/m3快速、灵敏度高、取样简单方便、能够反映氡浓度随时间的变换闪烁室本底增高后消除较困难、瞬时取样容易造成测量结果误差较大、对气压敏感
连续2~7 d
活性炭盒法累积3~7 dγ粒子

NaI(TI)

或半导体

3 Bq/m3操作及携带方便、价格低廉、适合于大 面积测量对温度和湿度敏感、暴露周期<7 d,只能得到平均测量结果

Fig.4

The measuring device of scintillation chamber(revised from Ref.[53])"

1 U.S. ENERGY INFORMATION ADMINISTRATION. Technically Recoverable Shale Oil and Shale Gas Resources: China[EB/OL].(2015-09-24)[2020-10-13]. https://www.eia.gov/analysis/studies/worldshalegas/pdf/China_2013.pdf.
2 NOWAK J, JODŁOWSKI P, MACUDA J. Radioactivity of the gas pipeline network in Poland[J]. Journal of Environmental Radioactivity, 2020,213:106143.
3 李宏涛, 王丽坤, 张哲铭, 等. 若尔盖铀矿田放射性物探异常特征分析及其找矿应用[J]. 四川地质学报, 2020,40(1):137-142.
LI H T, WANG L K, ZHANG Z M, et al. Radioactive geophysical anomaly and prospecting for the Roigê Uranium Oil Field[J]. Acta Geologica Sichuan, 2020,40(1):137-142.
4 李强, 肖友发, 徐璇, 等. 氡气测量在嘉鱼县地热资源勘查中的应用[J]. 资源环境与工程, 2019,33(4):541-546.
LI Q, XIAO Y F, XU X, et al. Application of radon measurement in geothermal resources exploration of Jiayu County[J]. Resources Environment & Engineering,2019,33(4):541-546.
5 肖宽怀. CSAMT探测和氡气测量在隧道工程地质勘探中的应用[J]. 工程地球物理学报, 2009,6(6):687-692.
XIAO K H.Application of CSAMT detection and radon gas measurement in geological exploration of tunnel project[J]. Chinese Journal of Engineering Geophysics,2009,6(6):687-692.
6 贾国相. 氡气勘查地球化学技术研究与应用[D]. 昆明: 昆明理工大学, 2009:18-61.
JIA G X. Research and Application of Radon Gas Exploration Geochemistry Technology[D]. Kunming:Kunming University of Science and Technology,2009:18-61.
7 ARORA B R, RAWAT G, KUMAR N, et al. Multi-parameter geophysical observatory: Gateway to integrated earthquake precursory research[J]. Currentence, 2012,113(11):1286-1299.
8 CHOUBEY V M, KUMAR N, ARORA B R. Precursory signatures in the radon and geohydrological borehole data for M4.9 Kharsali earthquake of Garhwal Himalaya[J]. Science of the Total Environment, 2009,407(22):5877-5883.
9 GHOSH D, DEB A, SAHOO S R, et al. Radon as seismic precursor: New data with well water of Jalpaiguri, India[J]. Natural Hazards, 2011,58(3):877-889.
10 JAISHI H P, SINGH S, TIWARI R P, et al. Radon and thoron anomalies along Mat fault in Mizoram, India[J]. Journal of Earth System Science, 2013,122(6):1507-1513.
11 RAMOLA R C. Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya[J]. Acta Geophysica, 2010,58(5):814-827.
12 ZMAZEK B, TODOROVSKI L, DZEROSKI S, et al. Application of decision trees to the analysis of soil radon data for earthquake prediction[J].Applied Radiation & Isotopes, 2003,58(6):697-706.
13 RAMOLA R C, PRASAD Y, PRASAD G, et al. Soil-gas radon as seismotectonic indicator in Garhwal Himalaya[J]. Applied Radiation & Isotopes, 2008,66(10):1523-1530.
14 曹玲玲, 王宗礼, 李春燕. 岷县漳县6.6级地震前天水花牛水氡异常可靠性研究[J]. 地震工程学报, 2013,35(4):800-807.
CAO L L, WANG Z L, LI C Y. Reliability study on water radon concentration anomaly of Huaniu spring in Tianshui before Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthuake Engineering Journal, 2013,35(4):800-807.
15 HU J, YANG G, HEGEDŰS M, et al. Numerical modeling of the sources and behaviors of 222Rn, 220Rn and their progenies in the indoor environment:A review[J]. Journal of Environmental Radioactivity, 2018,189:40-47.
16 TANG Q, QIU S, XIAO D, et al. Extraction and purification of 227Ac and development of solid 219Rn source[J]. Radiochimica Acta, 2014,102(1-2).
17 贾文懿, 方方, 周蓉生, 等. 氡及其子体向上运移的内因与团簇现象[J]. 成都理工大学学报:自然科学版, 1999,26(2):171-175.
JIA W Y, FANG F, ZHOU R S, et al. Internal causes of radon and its daughters upward migtation and cluster phenomenon[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 1999,26(2):171-175.
18 乐仁昌. 氡及其子体的释放和运移规律及机理研究[D]. 成都: 成都理工大学, 2001.
LE R C. Study on Release and Migration of Radon and Radon Progeny and Their Mechanism[D]. Chengdu:Chengdu University of Technology,2001.
19 TIAN W, WU X, LIU D, et al. Investigating effects of pore size distribution and pore shape on radon production in Marcellus shale gas formation[J]. Energy & Fuels, 2019,33(2):700-707.
20 RESNIKOFF. Radon in natural gas from Marcellus shale[J]. Ethics in Biology Engineering & Medicine, 2011.
21 TIAN W, WU X, SHEN T, et al. Quantitative prediction of Radon concentration at wellhead in shale gas development[J]. SPE Journal, 2017,22(1):235-243.
22 TIAN W, WU X, LIU D, et al. Investigating effects of pore size distribution and pore shape on Radon production in Mar-cellus shale gas formation[J]. Energy & Fluels, 2019,33(2):700-707.
23 邓君, 翟贺争, 宋延超, 等. 加气混凝土试块氡射气系数随含水率及环境条件变化的研究[J]. 中华放射医学与防护杂志, 2015,35(11):851-853.
DENG J, ZHAI H Z, SONG Y C, et al. The variation of the radon emanation coefficient on aerated concrete blocks with respect to water content, temperature and humidity[J]. Chinese Journal of Radiological Medicine and Protection, 2015,35(11):851-853.
24 付锦, 韩耀照. 氡射气系数与铀尾矿含水率关系探讨[J]. 南华大学学报:理工版, 2003,17(3):29-32.
FU J, HAN Y Z. Discussion on the relation ship between emanation coefficient tailings and moisture content of uranium[J]. Journal of Nanhua University:Science & Engineering Edition, 2003,17(3):29-32.
25 CHARLES, MONTY. UNSCEAR report 2000: Sources and effects of ionizing radiation. United Nations Scientific Comittee on the Effects of Atomic Radiation[J]. Journal of Radiological Protection Official Journal of the Society for Radiological Protection, 1993,21(1):83.
26 WHO. Radon and health[EB/OL]. (2016-12-30)[2020-10-13]. https://www.who.int/news-room/fact-sheets/detail/radon-and-health.
27 SMERHOVSKY Z, LANDA K, RSSNER P, et al. Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2002,514(1-2):165-176.
28 DARBY S, HILL D, AUVINEN A, et al. Radon in homes and risk of lung cancer:Collaborative analysis of individual data from 13 European case-control studies[J]. British Medical Journal, 2005,330(7485):223-226.
29 FUENTE M, LONG S, FENTON D, et al. Review of recent radon research in Ireland, OPTI-SDS project and its impact on the National Radon Control Strategy[J]. Applied Radiation and Isotopes, 2020,163:109210.
30 刘长忠. 中国每年因氡导致肺癌的病例五万例以上[EB/OL]. (2005-05-30)[2020-10-13].http://news.sina.com.cn/o/2005-05-09/09425836554s.shtml.
LIU C Z. There are more than 50 000 cases of lung cancer caused by rodon in China every year[EB/OL]. (2005-05-30)[2020-10-13].http://news.sina.com.cn/o/2005-05-09/09425 836554s.shtml.
31 EPA. A Citizen's Guide to Radon[EB/OL]. (2016-12-02)[2020-10-13]. https://www.epa.gov/sites/production/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf.
32 中国国家标准化管理委员会. GB/T 16146-2015 室内氡及其子体控制要求[S]. 北京: 中国标准出版社, 2015.
COMMITTEE, CHINA NATIONAL STANDARDIZING. GB/T 16146-2015 Control Requirements for Indoor Radon and its Daughters[S]. Beijing: Standards Press of China: Standards Press of China,2015.
33 中国国家标准化管理委员会. GB 37488-2019 公共场所卫生指标及限值要求[S]. 北京: 中国标准出版社, 2019.
COMMITTEE, CHINA NATIONAL STANDARDIZING. GB 37488-2019 Hygienic Indicatiors and Limits for Public Places[S]. Beijing:Standards Press of China,2019.
34 EVANS P, JONKERS G, STEFFAN E M, et al. Guidelines for the Management of Naturally Occurring Radioactive Material (NORM) in the Oil and Gas Industry[C]//SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, 2016.
35 RICHARD BALDWIN, 刘丹. 天然气管线内黑色粉末的特性及处理方法[J]. 国外油田工程, 2002,118(2):45-49.
RICHARD B, LIU D. Characteristics and treatment of black powder in natural gas pipeline[J]. Foreign Oilfield Engineering, 2002,118(2):45-49.
36 KHAN T S, AL-SHEHHI M S. Review of black powder in gas pipelines-An industrial perspective[J]. Journal of Natural Gas Science and Engineering, 2015,25:66-76.
37 COWIE M, MOUSLY K, FAGEEHA O, et al. NORM Ma-nagement in the oil and gas industry[J].Annals of the ICRP, 2012,41(3):318-331.
38 陈瑞鸥, 师春元, 陈以彬, 等. 四川天然气中氡含量及减轻氡危害的建议[J]. 天然气工业, 1994,14(1):66-68.
CHEN R O, SHI C Y, CHEN Y B, et al. Radon content in natural gas in Sichuan Province and suggestions on reducing radon hazard[J]. Natural Gas Industry, 1994,14(1):66-68.
39 马光勋, 林莲卿, 闻慧芬. 任邱天然气田氡含量及其变化[J]. 中华放射医学与防护杂志, 1994(5):308-310.
MA G X, LIN L Q, WEN H F. Oxygen content and its variation in Renqiu natural gas field[J]. Chinese Journal of Radiology and Protection, 1994(5):308-310.
40 LUO H, TANG D, YAN Q, et al. Radioactive elements in natural gas: A case study on distribution of gaseous 222radon and its origin mechanism[J]. Natural Hazards, 2012,63(2):647-657.
41 MITCHELL A L, GRIFFIN W M, CASMAN E A. Lung cancer risk from radon in Marcellus shale gas in northeast U.S. Homes[J]. Risk Analysis, 2016,36(11):2105-2119.
42 CHANYOTHA S, KRANROD C, PENGVANICH P, et al. Determination of radon in natural gas pipelines[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016,307(3):2095-2099.
43 ROWAN E L, KRAEMER T F. Radon-222 Content of Natural Gas Samples from Upper and Middle Devonian Sandstone and Shale Reservoirs in Pennsylvania: Preliminary Data Open-File Report Series 2012-1159[J]. Elisabeth Rowan, 2012.
44 DIXON D W, WILSON C K. Developments in the management of exposures from radon in natural gas in the UK [J]. Radioactivity in the Environment, 2005,7:1064-1070.
45 TAIT D R, MAHER D T, SANTOS I R. Seasonal and diurnal dynamics of atmospheric radon, carbon dioxide, methane, δ13C-CO2 and δ13C-CH4 in a proposed Australian coal seam gas field[J]. Water, Air, & Soil Pollution, 2015,226(10): 1-11.
46 BURKHART J, HUBER T, BOLLING G. Potential radon release during farcking in Colorado[J]. The American Association of Radon Scientists and Technologists. Radon Symposiun Paper, 2013:20-27.
47 BOTHA R, LINDSAY R, NEWMAN R T, et al. Radon in groundwater baseline study prior to unconventional shale gas development and hydraulic fracturing in the Karoo Basin (South Africa)[J]. Applied Radiation and Isotopes, 2019,147:7-13.
48 DARAKTCHIEVA Z, WASIKIEWICZ J M, HOWARTH C B, et al. Radon basline monitoring around a potential shale gas development site in Yorkshire, England[J]. Radiation Protection Dosimetry, 2017,177(1-2):140-143.
49 孙宜斌, 蒋复量, 王家炫, 等. 水氡的来源、危害以及控制措施研究[J]. 绿色科技, 2016(2):42-44.
SUN Y B, JIANG F L, WANG J X, et al. Review on research progress on the source,Hazard and control methods of water radon[J]. Journal of Green Science and Technology, 2016(2):42-44.
50 PALACIOS D, FUSELLA E, AVILA Y, et al. Radon measurements over a natural-gas contaminated aquifer[J]. Radiation Measurements, 2013,50:116-120.
51 杨志杰, 赵荣, 王南萍. 北京地区浅层土壤氡浓度的垂向分布特征[J]. 辐射防护, 2018,38(4):275-280.
YANG Z J, ZHAO R, WANG N P. Measurement of radon concentration in shallow soil in Beijing area[J]. Radiation Protection, 2018,38(4):275-280.
52 申超, 陈凌, 肖德涛, 等. 不同土壤氡分布的数值模拟[J]. 原子能科学技术, 2012,46(3):370-374.
SHEN C, CHEN L, XIAO D T, et al. Numerrical computation of radon distribution on different soils[J]. Atomic Energy Science and Technology, 2012,46(3):370-374.
53 匿名.环境空气中氡的标准测量方法(征求意见稿)[EB/OL]. (2020-06-02)[2020-10-20]. http://www.mee.gov.cn/xxgk 2018/xxgk/xxgk06/202006/W020200603575693152248.pdf.
ANONYMITY. Standard method for measuring radon in ambient air (Exposure Draft) [EB/OL]. (2020-06-02)[2020-10-20].http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202006/W020200603575693152248.pdf.
54 中国国家标准化管理委员会. GB∕T 34536-2017 天然气 氡浓度的测定 闪烁瓶法[S]. 北京:中国标准出版社,2017.
COMMITTEE, CHINA NATIONAL STANDARDIZING. GB∕T 34536-2017 Natural Gas-Determination of Radon Concentration-Scintillation Flash Method[S]. Beijing: Standards Press of China,2017.
55 蒋洪, 张黎, 刘仕鳌. 天然气中氡的危害及防护措施[J]. 油气田地面工程, 2013,32(2):18-19.
JIANG H, ZHANG L, LIU S A. Harm and protective measures of radon in natural gas[J]. Oil-Gasfield Surface Engineering, 2013,32(2):18-19.
56 NOWAK J, JODOWSKI P, MACUDA J. Radioactivity of the gas pipeline network in Poland[J]. Journal of Environmental Radioactivity, 2020,213:106-143.
57 曾文平, 黄黎明, 罗勤, 等. 我国天然气分析检测技术发展现状及展望[J]. 石油与天然气化工, 2013,42(1):68-73, 82.
ZENG W P, HUANG L M, LUO Q, et al. Development status and outlook of natural gas analysis and measurement technology in China[J]. Chemical Engineering of Oil and Gas, 2013,42(1):68-73, 82.
58 杨洁, 赵杨军, 廉冰, 等. 民用天然气燃烧所致公众内照射剂量估算[J]. 核电子学与探测技术, 2019,39(5):578-581.
YANG J, ZHAO Y J, LIAN B, et al. Public internal dose estimation for civil natural gas combustion[J]. Nuclear Electronics & Detection Technology, 2019,39(5):578-581.
59 李骁. 天然气中氡的检测与防护措施[J]. 化学工程与装备, 2014(8):201-204.
LI X. Detection and protection measures of radon in natural gas[J]. Chemical Engineering & Equipment, 2014(8):201-204.
60 PAEWPANCHON P, CHANYOTHA S. Development of the charcoal adsorption technique for determination of radon content in natural gas[J].Radiation Protection Dosimetry,2017,177(1-2):40-44.
[1] Zhong-xi HAN, Yan-xia GOU, Jin LI, Shou-guo GE, Wen-nian TIAN, Heng HUANG. Content distribution characteristics and genetic analysis of mercury in the natural gas from Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 356-362.
[2] Huai-shun ZHANG, Guang-you ZHU, Yu-xiang DING, Yu-ping ZHOU, Xiao-jie YAO, Gao-en WU, Shun-lin TANG. Sources of mercury in natural gas and mercury removal technology [J]. Natural Gas Geoscience, 2021, 32(3): 363-371.
[3] Guo-jian WANG, Yu-song YUAN, Wu LI, Chuan-zhi WU, Yu ZOU, Li LU, Feng-Li LI. Current situation and existing problems in research of natural gas diffusion coefficient [J]. Natural Gas Geoscience, 2021, 32(3): 372-381.
[4] Zhi-gang WEN, Li-rong DOU, Ding-sheng CHENG, Wei LI. Hydrocarbon characteristics and genesis in the southern depression of Bongor Basin, Chad [J]. Natural Gas Geoscience, 2021, 32(2): 205-214.
[5] . 2021-2025 is a period of great development of China's natural gas industry:Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China [J]. Natural Gas Geoscience, 2021, 32(1): 1-16.
[6] Ai-lin JIA, Dong-bo HE, Yun-sheng WEI, Yi-long LI. Predictions on natural gas development trend in China for the next fifteen years [J]. Natural Gas Geoscience, 2021, 32(1): 17-27.
[7] Yong-qian CUI, Fei-yu WANG, Chuan-bao ZHANG, Wei-ping FENG, Feng-xiang HOU, Xue-feng MA, Ying MA. Orgaofaices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance [J]. Natural Gas Geoscience, 2021, 32(1): 38-46.
[8] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[9] Xiao-qi WU, Ying-bin CHEN, Chang-bo ZHAI, Xiao-jin ZHOU, Wen-hui LIU, Jun YANG, Xiao-bo SONG. Gas source and exploration direction of the Middle Triassic Leikoupo Formation in the Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1204-1215.
[10] Jun CHEN, Jing CHEN, Na LI, Zhong-quan WANG. The exploration potential of Carboniferous natural gas in the eastern Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(7): 952-961.
[11] Xing LI, Jun GAN, Xi-bin YANG, Gang LIANG, Zi-ling WANG. Characterization of natural gas migration in the ancient buried hill, east deep water area of Qiongdongnan Basin [J]. Natural Gas Geoscience, 2020, 31(7): 970-979.
[12] Zeng-ye XIE, Chun-long YANG, Cai-yuan DONG, Xin DAI, Lu ZHANG, Jian-ying GUO, Ze-qing GUO, Zhi-sheng LI, Jin LI, Xue-ning QI. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin, China [J]. Natural Gas Geoscience, 2020, 31(4): 447-461.
[13] Er-ting LI, Jun JIN, Jian WANG, Zheng-jiang LUO, Wan-yun MA, Ju-lei MI, Dan HE, Ming WANG. Source of Carboniferous natural gas in Kelameili area, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(11): 1515-1523.
[14] Wei-qiang HU, Yang-bing LI, Xin CHEN, Li-tao MA, Cheng LIU, Ying HUANG, Fang QIAO, Duo WANG, Zai-zhen LIU. Origin and source of natural gas in the Upper Paleozoic in Linxing area, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(1): 26-36.
[15] Zhao Zheng-wang, Tang Da-hai, Wang Xiao-juan, Chen Shuang-ling. Discussion on main controlling factors of natural gas enrichment and high yield in tight sandstone gas reservoirs:Case study of Xujiahe Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 963-972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Xiang-Chen, KANG Yi-Li, LUO Ping-ping,YOU Li-Jun. Study on Experiment of Coal Spontaneous Imbibition Considering the Effective Stress[J]. Natural Gas Geoscience, 2011, 22(1): 171 -175 .
[2] . Characteristics of Separated Shale Gas from the Upper Triassic of Junggar Basin[J]. Natural Gas Geoscience, 2013, 24(6): 1284 -1289 .
[3] CAO Cheng,LI Tian-tai,ZHANG Lei,GAO Chao,WANG Hui. Shale Gas Dual Porosity-dual Permeability Model with Matrix Shrinking[J]. Natural Gas Geoscience, 2015, 26(12): 2381 -2387 .
[4] Zhu Wei-yao, Ma Dong-xu, Zhu Hua-yin, An Lai-zhi, Li Bing-bing. Stress sensitivity of shale gas reservoir and its influence on productivity[J]. Natural Gas Geoscience, 2016, 27(5): 892 -897 .
[5] Kang Hai-liang,Lin Chang-song,Niu Cheng-min,Ye Dong-qing,Zhuang Xing-yan. Faulting structure styles and their depositional filling response of thePaleogene margin of Shaleitian uplift,western Bohai Sea area[J]. Natural Gas Geoscience, 2017, 28(2): 254 -261 .
[6] Zhang Tao,Li Xiang-fang,Wang Yong-hui,Shi Jun-tai,Yang Li-feng,Sun Zheng,Yang Jian,Zhang Zeng-hua. Study on the effect of gas-shale reservoir special propertieson the fracturing fluid recovery efficiency and production performance[J]. Natural Gas Geoscience, 2017, 28(6): 828 -838 .
[7] Natural Gas Geoscience.
Contents of Natural Gas Geoscience, No.7, 2017
[J]. Natural Gas Geoscience, 2017, 28(7): 1 -2 .
[8] Song Ming-shui,He Ni-qian,Yang Shao-chun,Zhao Yong-fu,Ouyang Li-ming,Niu Hai-rui. Study on the fracture distribution pattern of volcanic rock in thrust fault developed zone[J]. Natural Gas Geoscience, 2017, 28(7): 989 -999 .
[9] Yu Qi-xiang,Yu Feng-hua,Shi Zheng. Genesis analysis of abnormal overpressure in Bashituo structure,Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1000 -1007 .
[10] Ning Chao-zhong,Xu Huai-min,Yang Jian-ping,Sun Hai-hang,Li Wei-lu,Su Chen,Chen Xiao-ran. Strata sequence and its mechanisms of the Bachu Formation in the Hudson area,Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1008 -1019 .