Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (4): 598-610.doi: 10.11764/j.issn.1672-1926.2020.12.006

Previous Articles     Next Articles

Study on the Lower Cambrian marine shale reservoir and methane adsorption characteristics in Xiuwu Basin

Chun-li GUO1,2(),Shuang YANG1,2,3,4(),An-dong WANG1,2,Yi-ting WANG2,Shuang-long ZHANG5,Xing QI5   

  1. 1.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China
    2.Collage of Earth Science,East China University of Technology,Nanchang 330013,China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    4.Key Laboratory of Petroleum Resources Research,Gansu Province,Lanzhou 730000,China
    5.Geological Prospecting Institute of Jiangxi Coalfield Geology Bureau,Nanchang 330001,China
  • Received:2020-10-10 Revised:2020-12-02 Online:2021-04-10 Published:2021-04-09
  • Contact: Shuang YANG E-mail:1418253657@qq.com;yangshuang18@ecut.edu.cn
  • Supported by:
    The Science and Technology Project of Jiangxi Provincial Department of Education(GJJ180393);the Fund of Gansu Key Laboratory of Petroleum Resources Research(SZDKFJJ20201201);the Doctoral Fund of State Key Laboratory of Nuclear Resources and Environment(Z1912);the Doctoral Fund Project of East China University of Technology(DHBK2018030)

Abstract:

Marine shale of Lower Cambrian Hetang Formation from Well RDZ01 in Xiuwu Basin is selected to study the reservoir and its gas-bearing characteristics by organic geochemical analysis, petrology, porosity, low temperature N2 adsorption, CO2 adsorption and supercritical CH4 isothermal adsorption. RO value ranges from 1.74% to 2.32%, with an average value of 2.10%, and the maturity of organic matter is high. The total organic carbon (TOC) content is high, with an average of 3.21%. Main components are quartz and clay, 52.66% and 35.56%, respectively, with a small amount of feldspar, carbonate rock and pyrite are developed. Open cylindrical, layered slit and ink bottle pores are mainly developed in shale, with low porosity (2.05%) and average pore size of 8.416 nm. Specific surface area (SSA) and pore volume are generally high, ranging from 6.94 m2/g to 46.48 m2/g and 0.004 2 cm3/g to 0.020 1 cm3/g, respectively. SSA of micropores is large, which is close to that of Longmaxi Formation shale in Sichuan Basin, indicating a sufficient gas storage space. Study area has a good material basis for shale gas generation, and the shale has a strong CH4 adsorption capacity (average 1.71 m3/t). The main influencing factors are TOC content and pore structure, and quartz is the favorable factor, while clay minerals have little effect. Shale in the study area is characterized by large thickness, shallow burial depth, type I organic matter, strong hydrocarbon generation ability and high content of brittle minerals, having good shale gas exploration potential.

Key words: Xiuwu Basin, Lower Cambrian, Hetang Formation, Marine shale, Pore structure, CO2 and N2 isothermal adsorption, CH4 adsorption

CLC Number: 

  • TE132.1

Fig.1

Regional tectonic position and lithology distribution of Well RDZ01 in Xiuwu Basin"

Table 1

Basic information of shale from Hetang Formation of Lower Cambrian in Xiuwu Basin"

样品编号深度/m层位TOC/%孔隙度/%
RDZ01-01483.28?0-1h1.691.38
RDZ01-05485.08?0-1h1.451.52
RDZ01-09490.88?0-1h1.145.88
RDZ01-15492.68?0-1h1.762.90
RDZ01-21494.98?0-1h1.960.72
RDZ01-27497.78?0-1h1.341.31
RDZ01-31499.98?0-1h1.510.05
RDZ01-37515.73?0-1h10.382.56
RDZ01-41518.13?0-1h8.782.13
RDZ01-46520.83?0-1h2.05

Fig.2

The mineral composition of Hetang Formation shales of Lower Cambrian in Xiuwu Basin"

Fig.3

Mineral composition comparison between Hetang Formation shale of Lower Cambrian in the study area and main gas producing shale in Sichuan Basin"

Fig.4

N2 adsorption and desorption isotherms of shales"

Table 2

Pore structure parameters of Hetang Formation shale of Lower Cambrian in Xiuwu Basin"

样品编号N2吸附法CO2吸附法

总比表面积

/(m2/g)

总孔体积

/(cm3/g)

比表面积/(m2/g)孔体积/(cm3/g)平均孔径/nm比表面积/(m2/g)孔体积/(cm3/g)
RDZ01-019.190.017 57.488.650.002 617.840.020 1
RDZ01-052.200.003 59.326.090.001 98.290.005 4
RDZ01-097.010.007 45.767.010.002 114.020.009 5
RDZ01-154.930.003 211.528.640.002 613.570.005 8
RDZ01-212.560.001 714.088.060.002 510.620.004 2
RDZ01-275.410.005 65.935.260.001 510.670.007 1
RDZ01-317.400.006 95.848.050.002 415.450.009 3
RDZ01-373.720.003 16.7442.760.012 746.480.015 8
RDZ01-411.740.002 79.4433.200.009 934.940.012 6
RDZ01-461.510.002 88.055.430.001 56.940.004 3

Fig.5

Characterization of pore size and pore volume distribution of shale by CO2 and N2 adsorption at low temperature"

Fig.6

Isotherm adsorption results of shale from Hetang Formation of Lower Cambrian in Xiuwu Basin by gravimetric method"

Fig. 7

Three-dimensional plots among VL,TOC and total specific surface area for the Hetang Formation shale of Lower Cambrian in Xiuwu Basin"

Fig.8

Relationship between clay minerals, quartz mass fraction and total specific surface area, VL of Hetang Formation shale of Lower Cambrian in Xiuwu Basin"

Fig.9

Relationship between pore structure parameters and VL of the shale of Hetang Formation of Lower Cambrian in Xiuwu Basin"

Table 3

Reservoir characteristics and exploration potential of Lower Cambrian marine shale in Xiuwu Basin"

数据来源本文夏小进等[6]庞飞 等[8]WANG等[11]付蕾等[12]GAO等[14]
基本特征埋藏深度/m421.20~527.731 500~3 500赣页1井,660~8401 000~3 500以上荷塘组500~3 500样品来自JY1井,2 520~2 667
厚度/m荷塘组83.23150~400露头,100~200280~340荷塘组60.3~130.93153.8

矿物

特征

成分及含量

/%

石英46.5~61(52.66),

黏土矿物31.3~39.5(35.56),

黄铁矿0.8~2.9(1.81)

脆性矿物56.7~79.7(66. 7),石英(61.9),黏土矿物15.4~29.3,(23.9)

脆性矿物40~80,

黏土矿物6~45

石英57.9~60.5,

白云石28.4~42.5,

发育黄铁矿

石英31.41~40.82(36.25), 长石22.48~36.85(28.72), 黏土矿物21.20~26.73(23.20),黄铁矿0~4.14(1.63)

石英29~83.1(54.9),

黏土矿物6~52(26.6), 黄铁矿0.9~18.5

有机地球 化学特征TOC/%1.14~10.38(3.21)1.37~4.93(2.87)露头1.96~15.46(8.43),岩心3.25~14.20(9.21)露头0.04~21.20(5.20)0.04~13.14(4.57)0.26%~21.8(7.64)
有机质类型Ⅰ型2—Ⅲ型Ⅰ型Ⅰ型Ⅰ型
RO/%1.74~2.32(2.10)2.56~3.39(2.78)2.0~4.5(3.17)2.57~4.28(3.37)3.29~3.68(3.42)3.0~5.0
物性特征孔隙度/%0.05~5.88(2.05)1.06~7.86(2.86)1.0~4.0(2.6)1.0~13.1(5.0)0.48~3.38(2.15)
渗透率/(10-3 μm2)0.000 50~0.001 20 (0.000 62)0.004~0.200(0.022)0.002~0.063(0.017)
孔隙结构 参数比表面积/(m2/g)6.94~46.48(17.88)0.91~8.36(4.23)9.35~20.09(15.19)0.97~14.6(7.29)

孔体积/

(10-3 cm3/g)

4.2~20.1(9.4)5.7~19.4(12.9)31~56(43)2.1~10.5(7.3)
孔径/nm5.76~14.08(8.416)扫描电镜10~560(80)137.40~165.01(153.83)3.52~16.1
勘探潜力CH4吸附量/(m3/t)0.54~4.94(1.71)PL=10 MPa时,VL=2.0PL=1.75 MPa时,VL=7.91;赣页1井 现场解析0.10~0.381.79~8.17(4.98)露头3.99~8.04(6.02)
估计资源量/(108 m3)26 000(赣西北地区)2 922.98(修武盆地)
1 郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397.
ZHENG M, LI J Z, WU X Z, et al. China's conventional and unconventional natural gas resource potential, key areas and exploration direction[J]. Natural Gas Geoscience, 2018,29 (10): 1383-1397.
2 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45 (4): 561-574.
3 陈青云. 江西省页岩气勘探现状及展望[C].第三届全国特殊气藏开发技术研讨会优秀论文集. 重庆: 重庆市科学技术协会,2014:54-59.
CHEN Q Y. Current situation and prospect of shale gas exploration in Jiangxi Province[C].Excellent Papers of the Third National Symposium on Special Gas Reservoir Development. Chongqing: Chongqing Science and Technology Association,2014:54-59.
4 祁星,胡秋祥,肖卫东,等.赣西北与焦石坝页岩气地质条件对比及启示[J].东华理工大学学报:自然科学版,2019,42(4):351-359,375.
QI X, HU Q X, XIAO W D, et al. Comparison and enlightenment of shale gas geological conditions between northwest Jiangxi and Jiaoshiba[J]. Journal of East China University of Technology, 2019,42 (4): 351-359,375.
5 章双龙,罗盈,胡秋祥,等.江西宜春地区北型乐平组页岩气成藏条件分析[J].东华理工大学学报:自然科学版,2019,42(4):360-367.
ZHANG S L, LUO Y, HU Q X, et al. Analysis of reservoir-forming conditions of shale gas of north type Leping Formation in the Yichun of Jiangxi Province[J]. Journal of East China University of Technology, 2019,42 (4): 360-367.
6 夏小进,胡小娟,王超勇.赣西北下寒武统页岩气成藏条件及资源潜力[J].特种油气藏,2013,20(6):35-39,142.
XIA X J, HU X J, WANG C Y. Shale gas accumulation condition and potential in Lower Cambrian in northwestern Jiangxi[J]. Special Oil and Gas Reservoirs,2013,20(6):35-39,142.
7 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
ZOU C N, ZHU R K, BAI B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011,27(6):1857-1864.
8 庞飞,包书景,任收麦,等.修武盆地下寒武统页岩气富集条件及有利区预测[J].东北石油大学学报,2014,38(5):23-30,85,6-7.
PANG F, BAO S J, REN S M, et al. shale gas accumulation conditions and favorable areas of the Lower Cambrian in Xiuwu Basin[J].Journal of Northeast Petroleum University, 2014,38 (5): 23-30,85,6-7.
9 GAO F L, SONG Y, LI Z, et al. Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu Basin, Southern China[J].International Journal of Coal Geology,2018,197: 53-65.
10 何晶,何生,刘早学,等.鄂西黄陵背斜南翼下寒武统水井沱组页岩孔隙结构与吸附能力[J].石油学报,2020,41(1):27-42.
HE J, HE S, LIU Z X, et al. Pore structure and adsorption capacity of shale in the Lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei[J]. Acta Petrolei Sinica, 2020,41 (1): 27-42.
11 WANG G C, JU Y W, HAN K. Early Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze Platform[J].Journal of Natural Gas Science and En-gineering, 2015, 22:489-497.
12 付蕾,陈巧丽,潘家永,等.下扬子地区过成熟海相页岩储层特征:以修武盆地司马剖面底——下寒武统荷塘组为例[J].科学技术与工程,2017,17(23):44-50.
FU L, CHEN Q L, PAN J Y, et al. The reservoir charcteristics of over-mature marine shale in the Lower Yangzte Plate: Taking the Bottom-Lower Cambrian Hetang Formation in the Xiuwu Basin as an instance[J]. Science Technology and Engineering, 2017,17 (23): 44-50.
13 孙焕泉,周德华,蔡勋育,等.中国石化页岩气发展现状与趋势[J].中国石油勘探,2020,25 (2):14-26.
SUN H Q, ZHOU D H, CAI X Y, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25 (2): 14-26.
14 GAO F L,SONG Y,LI Z,et al. Pore characteristics and dominant controlling factors of overmature shales: A case study of the Wangyinpu and Guanyintang formations in the Jiangxi Xiuwu Basin[J].Interpretation,2018,6(2): 393-412.
15 ZHANG K, JIA C Z, SONG Y, et al. Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region[J]. Fuel,2020,263: 1-15.
16 王朋飞,姜振学,吕鹏,等.重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J].天然气地球科学,2018,29(7):997-1008.
WANG P F, JIANG Z X, LV P, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J].Natural Gas Geoscience, 2018,29 (7): 997-1008.
17 祁星,胡秋祥,易锡华,等.江西修武盆地下寒武统王音铺组页岩气勘探前景[J].中国矿业,2015,24(10):102-107.
QI X, HU Q X, YI X H, et al. Shale gas exploration prospect of Lower Cambrian Wangyinpu Formation in Xiuwu Basin[J]. China Mining Magazine, 2015,24 (10): 102-107.
18 刘天琳,姜振学,刘伟伟,等.江西修武盆地早寒武世热液活动对有机质富集的影响[J].油气地质与采收率,2018,25(3):68-76.
LIU T L, JIANG Z X, LIU W W, et al. Effect of hydrothermal activity on the enrichment of sedimentary organic matter at Early Cambrian in the Xiuwu Basin[J].Petroleum Geology and Recovery Efficiency, 2018,25 (3): 68-76.
19 张成林,张鉴,李武广,等.渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J].天然气地球科学,2019,30(12):1794-1804.
ZHANG C L, ZHANG J, LI W G, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi formations in Dazu area,western Chongqing[J]. Natural Gas Geoscience, 2019,30 (12): 1794-1804.
20 HU H Y, HAO F, GUO X S, et al. Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area,eastern Sichuan Basin,China[J].Marine and Petrole-um Geology,2018,91: 251-261.
21 YANG F, XU S, HAO F, et al. Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China: Implications for shale gas accumulation mechanism[J]. Marine and Petroleum Geology,2019,109:394-407.
22 WANG C, ZHANG B Q, HU Q H, et al. Laminae characteristics and influence on shale gas reservoir quality of Lower Silurian Longmaxi Formation in the Jiaoshiba area of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109:839-851.
23 XU H, ZHOU W, ZHANG R, et al. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China[J]. Fuel,2019,241: 360-371.
24 彭女佳,何生,郝芳,等.川东南彭水地区五峰组—龙马溪组页岩孔隙结构及差异性[J].地球科学,2017,42(7):1134-1146.
PENG N J, HE S, HAO F, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area, southeastern Sichuan[J]. Earth Science,2017,42(7):1134-1146.
25 THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10): 1051-1069.
26 周尚文,薛华庆,郭伟,等.基于重量法的页岩气超临界吸附特征实验研究[J].煤炭学报,2016,41(11):2806-2812.
ZHOU S W,XUE H Q,GUO W,et al. Supercritical isothermal adsorption characteristics of shale gas based on gravimetric method[J].Journal of China Coal Society,2016,41(11): 2806-2812.
27 REXER T F T,BENHAM M J,APLIN A C,et al.Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels,2013,27(6):3099-3109.
28 马斌玉,徐守余,陈麦雨,等.页岩的甲烷吸附能力影响因素综述[J].海相油气地质,2018,23(2):31-38.
MA B Y, XU S Y, CHEN M Y, et al. An overview of influence factors of methane adsorption capacity in shale[J]. Marine Origin Petroleum Geology, 2018,23 (2): 31-38.
29 陈跃,马东民,吴圣,等.鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J].天然气地球科学,2018,29(2):189-198.
CHEN Y, MA D M, WU S, et al. Pore characteristics and main controlling factors of mud shale in coal-bearing strata of eastern Ordos Basin[J].Natural Gas Geoscience,2018,29(2): 189-198.
30 田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502.
TIAN H, ZHANG S C, LIU S B, et al. The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J]. Natural Gas Geoscience, 2016,27 (3): 494-502.
31 宋叙,王思波,曹涛涛,等.扬子地台寒武系泥页岩甲烷吸附特征[J].地质学报,2013,87(7):1041-1048.
SONG X, WANG S B, CAO T T, et al. The methane adsorption features of Cambrian shales in the Yangtze Platform[J]. Acta Geologica Sinica, 2013,87 (7): 1041-1048.
32 陈磊,姜振学,纪文明,等.陆相页岩微观孔隙结构特征及对甲烷吸附性能的影响[J].高校地质学报,2016,22(2):335-343.
CHEN L, JIANG Z X, JI W M, et al. Characteristics of microscopic pore structures and their effect impacts on methane adsorption capacity in continental shales[J]. Geological Journal of China Universities, 2016,22 (2): 335-343.
33 曹涛涛,邓模,刘虎,等.吴家坪组页岩储层特征及甲烷吸附能力——以鄂西利川地区为例[J].中国矿业大学学报,2021,50(1):138-153.
CAO T T, DENG M, LIU H, et al. Reservoir characteristics and methane adsorption capacity of Wujiaping Formation shale: A case study in Lichuan area, Western Hubei[J]. Journal of China University of Mining & Technology,2021,50(1):138-153.
34 吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012,33 (2): 249-256.
35 毕赫,姜振学,李鹏,等.渝东南地区龙马溪组页岩吸附特征及其影响因素[J].天然气地球科学,2014,25(2): 302-310.
BI H, JIANG Z X, LI P, et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J]. Natural Gas Geoscience,2014,25(2): 302-310.
36 聂海宽,何治亮,刘光祥,等.四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J].天然气工业,2020,40(6):31-41.
NIE H K, HE Z L, LIU G X, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry,2020,40(6):31-41.
37 胡东风.四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J].天然气地球科学,2019,30(5):605-615.
HU D F. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi formations in synclines, southeastern Sichuan Basin[J].Natural Gas Geoscience, 2019,30 (5): 605-615.
38 马新华,谢军,雍锐,等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发,2020,47(5):841-855.
MA X H, XIE J, YONG R, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5):841-855.
[1] Jie XU,Wei-hua GUO,Hao-tian LIU,Zhen QIN,Qiang MENG,Hui-fei TAO. Micro-pore structure characteristics and quantitative characterization of Silurian Longmaxi shale in western Hubei and Hunan areas [J]. Natural Gas Geoscience, 2021, 32(4): 611-622.
[2] Yi-xiong WU, Xiang-yang HU, Juan-zi YI, Dong YANG, Yu-nan LIANG. Research and application of acoustic time difference response characteristics of high temperature and overpressure gas reservoir in Yinggehai Basin [J]. Natural Gas Geoscience, 2021, 32(2): 298-307.
[3] Quan-qi DAI, Gui-wen WANG, Lian-chang ZHANG, Gang LI, Li-juan MA, Shu-fang GAO, Zhi-chao CHENG, Di ZHANG, Guo-liang LIU. Characteristics and logging prediction methods of pore structure facies in the tight reservoir and its constraints on economic recoverable reserve: Case study of mixed rocks in Yingxi area, Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(2): 308-318.
[4] Teng LI, Cai-fang WU. The grain size effect on pore structure characteristics of high-rank coal before and after the methane adsorption [J]. Natural Gas Geoscience, 2021, 32(1): 125-135.
[5] Ji-sheng MA, Ya CAI, Zhen-qin HU, Chong LU, Wei WANG. The water content and its effects on the pore structures of the shales from the coal-bearing Taiyuan Formation in the Yushe area of the Qinshui Basin [J]. Natural Gas Geoscience, 2021, 32(1): 145-154.
[6] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[7] Shi-ming LIU, Shu-heng TANG, Ting HUO, Fu-rong TAN, Da-cheng LIU, Jin-xi WANG. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081.
[8] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[9] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[10] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
[11] Zhen QIU, Cai-neng ZOU, Hong-yan WANG, Da-zhong DONG, Bin LU, Zhen-hong CHEN, De-xun LIU, Gui-zhong LI, Han-lin LIU, Jiang-lin HE, Lin WEI. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China [J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[12] Qing-yan MEI, Cheng ZOU, Shan YANG, Sheng-lai YANG, Yi ZHAO, Wei ZHENG. The influence of pore structure and heterogeneity on development of carbonate gas reservoir [J]. Natural Gas Geoscience, 2020, 31(12): 1757-1765.
[13] Hong-bin FU, Kun YUAN, Shu-fan LU, Xiang-lin CHEN, Tuo LIN, Sheng-jiang DU, Ben HE, Xiang-jian LUO. Microscopic pore structure characteristics and its effect on gas-bearing property of high-rank coal in Upper Permian Longtan Formation in western Guizhou [J]. Natural Gas Geoscience, 2020, 31(12): 1814-1825.
[14] Fei-ran CHEN, Xiang-feng WEI, Zhu-jiang LIU, Ming-chong AO, Ji-hong YAN. Pore development characteristics and main controlling factors of the Permian marine-continent transitional shale in the Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(11): 1593-1602.
[15] Yao-bo XU, Yu-shuang ZHU. Pore structure characteristics of high rank coal and its effect on CBM desorption [J]. Natural Gas Geoscience, 2020, 31(1): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!