Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (1): 109-118.doi: 10.11764/j.issn.1672-1926.2020.11.006

Previous Articles     Next Articles

Hydraulic fracturing simulation technology of shale gas reservoir and application of extended finite element method

Ying-kun ZHANG1(),Shang-bin CHEN1,2(),Xue-yuan LI1,Hui-jun WANG1   

  1. 1.School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221008,China
    2.Key Laboratory of the Ministry of Education on Coalbed Methane Resources and Accumulation Process,Xuzhou 221008,China
  • Received:2020-08-20 Revised:2020-10-29 Online:2021-01-10 Published:2021-02-04
  • Contact: Shang-bin CHEN E-mail:m15512011623@163.com;shangbinchen@163.com
  • Supported by:
    The National Natural Science Foundation of China(41772141);The natural Science Foundation of Jiangsu Province, China(BK20181362)

Abstract:

Low porosity and low permeability of shale gas reservoirs require hydraulic fracturing and other methods to achieve economic productivity. The shape and distribution of fractures are very important to the volume transformation. In order to study the simulation methods of hydraulic fracture, the common methods of reservoir hydraulic fracture simulation are systematically investigated and compared, and the extended finite element simulation is carried out. The results show that: (1) The physical experiment of hydraulic fracturing can visually observe the fracture morphology and distribution characteristics, but it is difficult to represent the actual fracturing situation of the reservoir due to the sample size and other problems. (2) The commonly used numerical simulation methods include boundary element method (BEM), unconventional fracture model (UFM), discrete fracture network (DFN) and extended finite element method (XFEM). These methods have their own advantages and disadvantages, which need to be improved to better simulate the real shale reservoir fracturing. (3) The extended finite element method is used to simulate the fracture extension of hydraulic fracturing and staged sequential fracturing. The influence of the angle between the perforation direction and the direction of the maximum horizontal principal stress and the induced stress on the fracturing pressure is obtained. The larger the angle is, the smaller the fracture deflection angle is, while the larger the fracture deflection distance is. The larger the angle is, the higher the initial fracturing pressure is, and the greater the pressure of stable fracture extension is. The induced stress will hinder the fracture extension. The simulation results have guiding significance for the selection of perforation direction and the design of perforation spacing in staged fracturing in actual engineering.

Key words: Shale reservoir, Hydraulic fracturing, Physical experiment, Numerical simulation, Extended finite element

CLC Number: 

  • TE311

Table 2

Model parameters [35]"

弹性模量E/GPa泊松比单轴抗压强度/MPa抗拉强度/MPa渗透率(K)/(10-3 μm2)
8.4020.2328.342.590.1
孔隙度(φ)/%最大水平主应力(σH)/MPa最小水平主应力(σh)/MPa试验排量/(m3/s)压裂液表观黏度/(mPa·s)
1.85612.1×10-973

Fig.1

Fracture extension pattern of hydraulic fracturing"

Fig.2

Angle between model perforation direction and the maximum horizontal principal stress"

Fig.3

Calculation results of finite element model for different perforation directions"

Fig.4

Curve of pressure under different perforation directions changing with time"

Fig.5

Relation curve of fracturing pressure with perforation direction"

Fig.6

Initial model of staged fracturing"

Fig.7

Calculation results of staged fracturing model"

1 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979-1007.
ZOU C N,YANG Z,ZHU R K,et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979-1007.
2 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.
DONG D Z,WANG Y M,LI X J,et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19-32.
3 郑哲敏. 关于中国页岩气持续开发工程科学研究的一点认识[J]. 科学通报,2016,61(1):34-35.
ZHENG Z M. Some knowledge on engineering scientific research of shale gas sustainable development in China[J]. Science Bulletin,2016,61(1):34-35.
4 续震,卢鹏. 国内水力压裂技术现状[J]. 石化技术,2017,24(5):280.
XU Z,LU P. Current situation of domestic hydraulic fracturing technology[J]. Petrochemical Industry Technology,2017,24 (5):280.
5 蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36-40.
JIANG T X,JIA C G,WANG H T,et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques,2011,39(3):36-40.
6 侯振坤,杨春和,王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407-414.
HOU Z K,YANG C H,WANG L,et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics,2016,37(2):407-414.
7 周治东,程万,魏子俊,等. 基于BEM的水力裂缝起裂与扩展数值模拟[J]. 地球物理学进展,2020,35(2):807-814.
ZHOU Z D,CHENG W,WEI Z J,et al. Numerical simulation of hydraulic fracture initiation and propagation based on BEM[J]. Progress in Geophysics,2020,35(2): 807-814.
8 梁天成,付海峰,刘云志,等. 水力压裂裂缝扩展声发射破裂机制判定方法研究[J]. 实验力学,2019,34(2):358-364.
LIANG T C,FU H F,LIU Y Z,et al. On the determination method of rupture mechanism in acoustic emission used in hydraulic fracturing fracture propagation[J]. Journal of Experimental Mechanics,2019,34(2):358-364.
9 梁冰,岳鹭飞,孙维吉. 页岩矿物组分对裂缝扩展影响的数值模拟分析[J]. 海相油气地质,2019,24(4):97-101.
LIANG B,YUR L F,SUN W J. The influence of shale mineral composition on crack growth:Numerical simulation[J]. Marine Origin Petroleum Geology,2019,24(4):97-101.
10 侯冰,陈勉,谭鹏,等. 页岩气藏缝网压裂物理模拟的声发射监测初探[J]. 中国石油大学学报:自然科学版,2015,39(1):66-71.
HOU B,CHEN M,TAN P,et al. Monitoring of hydraulic fracture network by acoustic emission method in simulated tri-axial fracturing system of shale gas reservoirs[J]. Journal of China University of Petroleum:Edition of Natural Science,2015,39(1):66-71.
11 曾义金,周俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1758-1766.
ZENG Y J,ZHOU J,WANG H T,et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering,2019, 38(9):1758-1766.
12 LLANOS E M,JEFFREY R G,HILLIS R,et al. Hydraulic fracture propagation through an orthogonal discontinuity: A laboratory,analytical and numerical study[J]. Rock Mechanics and Rock Engineering,2017,50(8):2101-2118.
13 孙峰,唐梅荣,张翔,等. 水平井定面射孔近井筒的破裂形态[J]. 天然气工业,2019,39(4):62-68.
SUN F,TANG M R,ZHANG X,et al. Fracture geometry near the wellbore of a horizontal well with in-plane perforation[J]. Natural Gas Industry,2019,39(4):62-68.
14 刘奉银,王少宾,徐楠. 定面射孔水力压裂裂缝扩展研究[C]∥中国力学学会,北京理工大学. 中国力学大会,2017暨庆祝中国力学学会成立60周年大会论文集.北京:中国力学学会,2017:1791-1800.
LIU F Y,WANG S B,XU N. Study on fracture expansion of hydraulic fracturing with fixed perforation[C]∥Chinese Society of Theoretical and Applied Mechanics, Beijing Institute of Technology. Proceedings of Proceedings of China mechanical congress,2017 and celebration of the 60th anniversary of the founding of the Chinese society of Mechanics. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2017:1791-1800.
15 刘合,兰中孝,王素玲,等. 水平井定面射孔条件下水力裂缝起裂机理[J]. 石油勘探与开发,2015,42(6):794-800.
LIU H,LAN Z X,WANG S L,et al. Hydraulic fracture initiation mechanism in the definite plane perforating technology of horizontal well[J]. Petroleum Exploration and Development,2015,42(6):794-800.
16 陈勉,庞飞,金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报,2000,19(S1):868-872.
CHEN M,PANG F,JIN Y. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(S1):868-872.
17 STANCHITS S,SURDI A,GATHOGO P. Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements[J].Rock Mechanics and Rock Engineering,2014,47(5):1521-1532.
18 LECAMPION B,DESROCHES J,JEFFREY R G,et al. Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials[J]. Journal of Geophysical Research: Solid Earth,2017,122(2):1239-1263.
19 DEHGHAN A N,GOSHTASBI K,AHANGARI K,et al. Experimental investigation of hydraulic fracture propagation in fractured blocks[J]. Bulletin of Engineering Geology and the Environment,2015,74(3):887-895.
20 解经宇,蒋国盛,王荣璟,等. 射孔对页岩水力裂缝形态影响的物理模拟实验[J]. 煤炭学报,2018,43(3):776-783.
JIE J Y,JIANG G S,WANG R J,et al. Experimental investigation on the influence of perforation on the hydraulic fracture geometry in shale[J]. Journal of China Coal Society,2018,43(3):776-783.
21 考佳玮,金衍,付卫能,等. 注液方式对深层页岩裂缝形态影响实验研究[J]. 地下空间与工程学报,2019,15(1):32-38.
KAO J W,JIN Y,FU W N,et al. Experiments research on the influence of injection method on hydraulic fracture morphology of deep shale[J]. Chinese Journal of Underground Space and Engineering,2019,15(1):32-38.
22 陈铭,张士诚,胥云,等. 基于互补算法的水力裂缝与天然裂缝相互作用边界元模型[J]. 岩石力学与工程学报,2018,37(S2):3947-3957.
CHEN M,ZHANG S C,XU Y,et al. Boundary element model for mechanical interaction between hydraulic fracture and natural fracture based on complementary algorithm[J].Chinese Jou-rnal of Rock Mechanics and Engineering,2018,37(S2):3947-3957.
23 KRESSE O,WENG X,GU H. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering,2013,46(3):555-568.
24 GU H,COHEN C,WENG X,et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations,2011,26(4):368-380.
25 卞晓冰,侯磊,蒋廷学,等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏,2019,31(6):161-168.
BIAN X B,HOU L,JIANG T X,et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs,2019,31(6):161-168.
26 赵猛,范锡彦. 页岩气缝网优化的数值模拟[J]. 大庆石油地质与开发,2019,38(4):167-174.
ZHAO M,FAN X Y. Optimized numerical simulation of the fracture network in the shale gas[J]. Petroleum Geology & Oilfield Development in Daqing,2019,38(4):167-174.
27 欧阳伟平,孙贺东,韩红旭.致密气藏水平井多段体积压裂复杂裂缝网络试井解释新模型[J].天然气工业,2020,40(3):74-81.
OUYANG W P,SUN H D,HAN H X. A new well test interpretation model for complex fracture networks in horizontal wells with multi-stage volume fracturing in tight gas reservoirs[J]. Natural Gas Industry,2020,40(3):74-81.
28 徐加祥,丁云宏,杨立峰,等. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学,2018,29(9):1356-1363.
XU J X,DING Y H,YANG L F,et al. Analysis of stress interference and geometry of hydraulic fractures based on the extended finite element method[J].Natural Gas Geoscience,2018,29(9):1356-1363.
29 曾青冬,姚军. 水平井多裂缝同步扩展数值模拟[J]. 石油学报,2015,36(12):1571-1579.
ZENG Q D, YAO J. Numerical simulation of multiple fra-ctures simultaneous propagation in horizontal wells[J]. Acta Petrolei Sinica,2015,36(12):1571-1579.
30 衡帅,杨春和,曾义金,等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报,2014,36(7):1243-1251.
HENG S,YANG C H,ZENG Y J,et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1243-1251.
31 HOSSAIN M M,RAHMAN M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing[J]. Journal of Petroleum Science & Engineering,2008,60(2):86-104.
32 MEYER B R,BAZAN L W,JACOT R H. Optimization of Multiple Transverse Hydraulic Fractures in Horizontal Wellbores[C]// SPE Unconventional Gas Conference. SPE 131732. Richardson: Society of Petroleum Engineers,2010.
33 MOES N,DOLBOW J,BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
34 BELYTSCHKO T,SUKUMAR N,DAUX C,et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Methods in Engineering,2000,48(12):1741-1760.
35 姜浒,陈勉,张广清,等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报,2009,28(7):1321-1326.
JIANG H,CHEN M,ZHANG G Q,et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1321-1326.
36 高红,郑颖人,冯夏庭. 岩土材料最大主剪应变破坏准则的推导[J]. 岩石力学与工程学报,2007,26(3):518-524.
GAO H,ZHENG Y R,FENG X T. Deduction of failure criterion for geomaterials based on maximum principal shear strain[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):518-524.
37 张晓咏,戴自航. 应用ABAQUS程序进行渗流作用下边坡稳定分析[J]. 岩石力学与工程学报,2010,29(S1):2927-2934.
ZHANG X Y,DAI Z H. Analysis of slope stability under seepage by using ABAQUS program[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1):2927-2934.
38 龚迪光,曲占庆,李建雄,等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学,2016,37(5):1512-1520.
GONG D G,QU Z Q,LI J X,et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics,2016,37(5):1512-1520.
39 薛炳,张广明,吴恒安,等. 油井水力压裂的三维数值模拟[J].中国科学技术大学学报,2008,38(11):1322-1325,1347.
XUE B,ZHANG G M,WU H A,et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China,2008,38(11):1322-1325,1347.
[1] Xuping MA, Qingli ZENG. Influence of multi-perforation fracturing on the regularity of hydraulic fractures propagation [J]. Natural Gas Geoscience, 2022, 33(2): 312-323.
[2] Jun ZHAO, Zhifeng SHI, Yuanping LI, Xinran XIANG, Jie LI, Na WEI. Simulation of conductivity characteristics of gas hydrate reservoirs and its saturation calculation [J]. Natural Gas Geoscience, 2021, 32(9): 1261-1269.
[3] Yun-yan NI, Li-miao YAO, Feng-rong LIAO, Jin-liang GAO, Jian-ping CHEN, Jian-li SUI, Di-jia ZHANG. Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(4): 492-509.
[4] Zhi-rong WANG, Zhen-yang WEN, Ling-xia CHEN. Productivity prediction of vertical test well for fractured coal reservoir under hydraulic fracturing [J]. Natural Gas Geoscience, 2021, 32(4): 465-471.
[5] Guo-jian WANG, Yu-song YUAN, Wu LI, Chuan-zhi WU, Yu ZOU, Li LU, Feng-Li LI. Current situation and existing problems in research of natural gas diffusion coefficient [J]. Natural Gas Geoscience, 2021, 32(3): 372-381.
[6] Yu LU, Zhi-heng ZHAO, Hai-tao LI, Chang LIU, Hong-wen LUO, Hui XIAO. Study on the law of fracture propagation from multiple cluster limited entry perforation in shale reservoir [J]. Natural Gas Geoscience, 2021, 32(2): 268-273.
[7] Haifeng FU, Bo CAI, Nailing XIU, Xin WANG, Tiancheng LIANG, Yunzhi LIU, Yuzhong YAN. The study of hydraulic fracture vertical propagation in unconventional reservoir with beddings and field monitoring [J]. Natural Gas Geoscience, 2021, 32(11): 1610-1621.
[8] Jian XIONG, Junjie LIU, Jun WU, Xiangjun LIU, Zhenlin WANG, Lixi LIANG, Lei ZHANG. Fracture propagation law and fracability evaluation of the tight reservoirs [J]. Natural Gas Geoscience, 2021, 32(10): 1581-1591.
[9] Li-jun YOU, Xin-lei LI, Yi-li KANG, Ming-jun CHEN, Jiang LIU. Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs [J]. Natural Gas Geoscience, 2020, 31(3): 325-334.
[10] Jin-zhou ZHAO,Qiang WANG,Yong-quan HU,Lan REN,Cheng-hao FU,Chao-neng ZHAO. Numerical simulation of multi-hole fracture competition initiation and propagation [J]. Natural Gas Geoscience, 2020, 31(10): 1343-1354.
[11] Li-chao CHEN, Sheng-wei WANG. Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir [J]. Natural Gas Geoscience, 2020, 31(1): 122-131.
[12] Jia-xiang Xu, Li-feng Yang, Yun-hong Ding, Zhe Liu, Rui Gao, Zhen Wang. Stress sensitivity analysis of the shale reservoir by the quartet structure generation set [J]. Natural Gas Geoscience, 2019, 30(9): 1341-1348.
[13] Zhang Han. Conductivity optimization research of complex network fractures in shale reservoirs of Longmaxi Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 955-962.
[14] Wei Yun-sheng, Jia Ai-lin, Guo Zhi, Meng De-wei, Wang Guo-ting. Optimal deployment of multi-stage fractured horizontal wells in tight sandstone gas reservoirs [J]. Natural Gas Geoscience, 2019, 30(6): 919-924.
[15] Chen Li-chao, Wang Sheng-wei, . Relationship between elastic mechanical properties and equivalent  fracture pressure of coal reservoir near wellbore [J]. Natural Gas Geoscience, 2019, 30(4): 503-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[5] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[6] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[7] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[8] DU Le-tian. INTRODUCTION AND ANALYSIS OF FOREIGN NATURAL GAS GEOSCIENCE STUDIES BASED ON SO KOLOV'S DATA[J]. Natural Gas Geoscience, 2007, 18(1): 1 -18 .
[9] . THERMAL SIMULATION OF ORDOVICIAN SOURCE ROCK OF FORELANDBASIN IN  WESTERN ORDOS[J]. Natural Gas Geoscience, 2006, 17(2): 187 -191 .
[10] LIU Quan-you;Liu Wen-hui;Krooss B M;WANG Wan-chun;DAI Jin-xing. ADVANCES IN NITROGEN GEOCHEMISTRY OF NATURAL GAS[J]. Natural Gas Geoscience, 2006, 17(1): 119 -124 .