Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (1): 119-124.doi: 10.11764/j.issn.1672-1926.2020.09.010

Previous Articles     Next Articles

Carbon isotope characteristics of methane during desorption of coalbed methane

Dan WANG1(),Guang-shan GUO2,Yang YU3,Gai-xia ZHANG4,Ming CHEN4,Ming-xing CHEN   

  1. 1.Baise University,Baise 533000,China
    2.New Energy Research Center,CNOOC Research Institute,Beijing 100028,China
    3.China Institute of Geo?Environment Monitoring,Beijing 100081,China
    4.PetroChina CBM Company Linfen Branch,Linfen 042300,China
  • Received:2020-07-06 Revised:2020-09-24 Online:2021-01-10 Published:2021-02-04
  • Supported by:
    The Guangxi Zhuang Autonomous Region Universities Young and Middle-aged Teachers' Basic Scientific Research Ability Improvement Project(2020KY19021)

Abstract:

The research is performed with core samples obtained by ropes, which was desorbed continuously within seal container, and carbon isotopic analyses were measured for the CBM samples collected per 250 mL one time. The result of test indicates: In earlier stage,δ13CPDB CBM increases slowly; δ13CPDB CBM increases quickly when the amount of desorption gas up to certain volume; In last stage, δ13CPDB CBM became to increase slowly again. In the condition of constant temperature in the earth surface, δ13CPDB of CBM desorption gas becomes heavy with increasing time, and it is characterized by a mode of slow, fast then slow. In common, the result for isotope testing of CBM desorption samples, it is slightly lower for the earlier desorption stage than the true isotope.

Key words: CBM, Resolve, Carbon isotope, Fractionation

CLC Number: 

  • TE132.2

Table1

Gas component concentration table of CBM sample"

样品无空气体积分数 / %
N2CO2CH4C2H6C3H8
M6-22.561.1296.210.11/

Table 2

Relationship between methane carbon isotope ratio and desorption time & volume for the coal sample"

序号时间间隔/min时间/min体积/mL体积累加/mL温度/℃同位素值/‰
166(装罐)1 341.5(损失气量)1 341.525-
2392501 591.525-36.1
34132501 841.525-35.8
45182502 091.525-35.7
57252502 341.525-35.4
611362502 591.525-35.6
712482402 831.525-35.4
814622553 086.525-35.2
920822153 301.525-35.2
10501322403 541.525-34.9
11301623003 841.535-34.5
12251872504 091.535-34.0
13402272524 343.535-33.7
14552822754 618.535-33.3
15753572504 868.535-32.7
161134702525 120.535-32.6
171626322525 372.535-32.0
182578892505 622.535-30.9
194471 3362255 847.535-27.7
201 3532 6892406 087.535-22.5
212 0804 7691056 192.535-
残余1 378.27 570.735

Fig.1

Volume of desorbed CBM versus the square root of desorption time"

Fig.2

Curve chart of desorbed rate in the process of CBM desorption"

Fig.3

Curves illustrating how CBM methane δ13CPDB values vary with desorption time"

Fig.4

Change in methane δ13CPDB with the volume of desorbed gas"

Fig.5

Change in methane δ13CPDB with the volume fraction of the desorbed gas"

1 宋岩,柳少波,洪峰,等.中国煤层气地球化学特征及成因[J].石油学报,2012,33(1):99-106.
SONG Y, LIU S B, HONG F, et al. Geochemical characteristics and genesis of coalbed methane in China[J]. Acta Petrolei Sinica, 2012, 33(1):99-106.
2 李勇,汤达祯,方毅.鄂尔多斯盆地东缘煤层气甲烷碳同位素分布及成因[J].中国科学:地球科学,2014,44(9):1940-1947.
LI Y, TANG D Z, FANG Y, et al. Distribution of stable carbon isotope in coalbed methane from the east margin of Ordos Basin[J]. Science China Earth Sciences, 2014, 44(9):1940-1947.
3 于振锋,郝春生,杨昌永,等.阳泉矿区寺家庄井田9#煤段煤层气地球化学特征及成因分析[J].矿业安全与环保,2019,40(3):96-99.
YU Z F, HAO C S, YANG C Y,et al. Theanalysis of geochemical characteristics and origins of CBM in 9# coal section of Sijiazhuang mine in Yangquan mining area[J]. Mining Safety & Environmental Protection, 2019,40(3):96-99.
4 夏鹏,曾凡桂,宋晓夏,等.山西古交矿区煤层气组成特征及成因探讨[J].煤炭学报,2019,44(9):2824-2832.
XIA P, ZENG F G,SONG X X, et al.Origins and molecular composition of coalbed methane in Gujiao area,Shanxi[J]. Jo-urnal of China Coal Society,2019,44(9):2824-2832.
5 孙奕婷,田兴旺,马奎,等.川西北地区双鱼石气藏中二叠统天然气碳氢同位素特征及气源探讨[J].天然气地球科学,2019,30(10):1477-1486.
SUN Y T, TIAN X W, MA K,et al.Carbon and hydrogen isotope characteristics and source of natural gas in Shuangyushi gas reservoir,northwestern Sichuan Basin[J].Natural Gas Geo-science,2019,30(10):1477-1486.
6 段毅,赵阳,曹喜喜.热解煤成甲烷碳同位素演化及其动力学研究[J].中国矿业大学学报,2014,43(1): 64-71.
DUAN Y, ZHAO Y, CAO X X, et al. Carbon isotopic evolution and dynamic characteristics of pyrolysis methane[J]. Journal of China University of Mining & Technology, 2014, 43(1):64-71.
7 孟召平,张纪星,刘贺.煤层甲烷碳同位素与含气性关系[J].煤炭学报,2014,39(8):1683-1690.
MENG Z P, ZHANG J X, LIU H, et al. Relationship between the methane carbon isotope and gas-bearing properties of coal reservoir[J]. Journal of China Coal Society,2014,39(8):1683-1690.
8 王丹,任文军,王春宇,等.中高煤阶煤层气开发技术[M].北京:石油工业出版社,2017:12-19.
WANG D, REN W J,WANG C Y, et al.Development Technology of Medium and High Rank Coalbed Methane[M].Beijing: Petroleum Industry Press:12-19.
9 吴双,汤达祯,李松,等.温度/压力对甲烷超临界吸附能量参数的影响机制[J].煤炭科学技术,2019,47(9):60-67.
WU S, TANG D Z, LI S, et al. Effect of temperature and pressure on energy parameters of methane super-critical adsorption[J]. Coal Science and Technology,2019, 47(9):60-67.
10 高小康,宋岩,柳少波.关于煤层气甲烷碳同位素值对比的探讨[J].天然气工业,2010,30(6):11-14.
GAO X K, SONG Y, LIU S B, et al. A discussion on the comparison of carbon isotope values of coalbed methane[J]. Natural Gas Industry, 2010, 30(6):11-14.
11 李五忠,雍洪,李贵中.煤层气甲烷碳同位素的特征及分馏效应[J].天然气工业,2010,30(11):11-16.
LI W Z, YONG H, LI G Z, et al. Features and fractionation effect of methane isotope in coalbed methane gas[J]. Natural Gas Industry, 2010, 30(11):11-16.
12 孙健,魏强,晏波,等.煤层吸附气的全解吸过程及组分与碳同位素变化:基于热模拟实验结果[J].煤炭学报,2018,43(10):2848-2856.
SUN J, WEI Q, YAN B, et al. Desorption process and variation of chemical and carbon isotopic composition of coalbed adsorbed gas based on the results of thermal simulation[J]. Journal of China Coal Society,2018,43(10): 2848-2856.
13 MARTIN N, MICHAEL J W. Stable isotope of coalbed gas during desorption and production[J]. Geosciences,2017,43(7):1-21.
[1] Yuanhong HAN, Houyong LUO, Yuze XUE, Xiaofu LI, Tinghui ZHANG, Yuping ZHANG, Pengfei TAO. Genesis and helium enrichment mechanism of geothermal water-associated gas in Weihe Basin [J]. Natural Gas Geoscience, 2022, 33(2): 277-287.
[2] Liwu LI, Zihan GAO, Jian HE, Chunhui CAO, Zhongping LI. Argon isotopic composition of air at different altitudes and its significance in oil and gas geochemistry [J]. Natural Gas Geoscience, 2022, 33(1): 92-100.
[3] Xiao-lin LU, Mei-jun LI, Xiao-juan WANG, You-jun TANG, Teng-qiang WEI, Da-xiang HE, Hai-tao HONG, Chang-jiang WU, Zi-chao RAN. Light hydrocarbon characteristics of oil and gas in Jurassic reservoirs in the center of Sichuan Basin, China [J]. Natural Gas Geoscience, 2021, 32(7): 1073-1083.
[4] Qing-chang RAN, Shu-ming CHEN, Xiang ZHOU. Geochemical characteristics and enrichment regularity of deep gas in Xingshan Sag, Songliao Basin [J]. Natural Gas Geoscience, 2021, 32(5): 727-737.
[5] Quan-you LIU, Xiao-qi WU, Dong-ya ZHU, Qing-qiang MENG, Hui-yuan XU, Wei-long PENG, Xiao-wei HUANG, Jia-yi LIU. Generation and resource potential of abiogenic alkane gas under organic-inorganic interactions in petroliferous basins [J]. Natural Gas Geoscience, 2021, 32(2): 155-163.
[6] Zhi-gang WEN, Li-rong DOU, Ding-sheng CHENG, Wei LI. Hydrocarbon characteristics and genesis in the southern depression of Bongor Basin, Chad [J]. Natural Gas Geoscience, 2021, 32(2): 205-214.
[7] Cheng TAO, Jie WANG, Baojian SHEN, Lingjie YU, Huamin YANG. Experimental study on carbon isotopic fractionation of methane flow [J]. Natural Gas Geoscience, 2021, 32(11): 1709-1713.
[8] Qiang NIU, Huan-xu ZHANG, Di ZHU, Zhi-yao XU, Yun-feng YANG, An-xu DING, He-qun GAO, Li-sheng ZHANG. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1294-1305.
[9] Gang LIANG, Jun GAN, Jun-jun YOU, Xing LI, Ming-zhu LEI. Geochemical characteristics and exploration prospect of low mature coal-derived gas in Qiongdongnan Basin [J]. Natural Gas Geoscience, 2020, 31(7): 895-903.
[10] Chun-min HE, Jun GAN, Gang LIANG, Xing LI, Xing WANG, Hui TIAN. The influence of pressure on hydrocarbon gas generation and carbon isotope of methane from type III kerogen [J]. Natural Gas Geoscience, 2020, 31(7): 931-938.
[11] Chao-wei LIU, Xu-guang GUO, Ze-sheng WANG, Ling-li ZHU, Rong ZHANG, Hong CHEN. Study on hydrocarbon accumulation stage of Jurassic Toutunhe Formation in Fudong Slope, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(7): 962-969.
[12] Er-ting LI, Hui-tong WANG, Jian WANG, Xiang-jun LIU, Na WENG, Hai-jing WANG. Study on composition of saturated hydrocarbon complex mixtures in biodegraded crude oil from Wuxia area, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(4): 462-470.
[13] Er-ting LI, Jun JIN, Jian WANG, Zheng-jiang LUO, Wan-yun MA, Ju-lei MI, Dan HE, Ming WANG. Source of Carboniferous natural gas in Kelameili area, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(11): 1515-1523.
[14] Wei-qiang HU, Yang-bing LI, Xin CHEN, Li-tao MA, Cheng LIU, Ying HUANG, Fang QIAO, Duo WANG, Zai-zhen LIU. Origin and source of natural gas in the Upper Paleozoic in Linxing area, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(1): 26-36.
[15] An-lai MA, Hui-li LI, Jie-hao LI, Xiao-peng GAO, Fan WANG, Yao YAO, Fan FENG. The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(1): 47-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[2] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[3] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[4] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .
[5] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[6] . THE APPLIANCE OF SIMULATION EXPERIMENT OF POOL-FORMING IN DEVELOPMENT OF BAIY USHAN RESERVOIR[J]. Natural Gas Geoscience, 2006, 17(2): 219 -222 .
[7] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[8] LI Feng-jie~1,2,WANG Duo-yun~1. THE HIGH-RESOLUTION SEQUENCE STRATIGRAPHIC FEATURE OF YANCHANG FORMATION IN XIFENG OILFIELD, ORDOS BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 339 -344 .
[9] ZHAO Meng-jun,SONG Yan,LIU Shao-bo,QIN Sheng-fei,HONG Feng,FU Guo-you, DA Jiang. THE PRIMARY STUDY ON THE FORMATION OF OIL AND GAS FIELDS IN THE FORELAND BASINS IN CENTRAL AND WESTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(4): 445 -451 .
[10] YAO Ya-ming,ZHOU Ji-jun,HE Ming-xi,FU Dai-guo,CHEN Jian-jun.
IDEAS ON THE PETROLEUM GEOLOGY CONDITIONS OF YANJI BASIN
[J]. Natural Gas Geoscience, 2006, 17(4): 463 -467 .