Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (1): 73-85.doi: 10.11764/j.issn.1672-1926.2020.09.005

Previous Articles     Next Articles

Carbon and oxygen isotope characteristics of carbonate and Neogene depositional environment in the Yiliping area of Qaidam Basin

Xu ZENG1(),Tong LIN1,Fei ZHOU2,Jie LI3,Yi ZHANG2,Xiao-shuang SHEN2,Yong-sheng FANG4,Ke WANG2   

  1. 1.PetroChina Research Institute of Exploration and Development,Beijing 100083,China
    2.Research Institute of Oil Exploration and Development of Qinghai Oil Field Branch Company of China National Petroleum Corporation,Dunhuang 736202,China
    3.No. 1 Oil Production plant,Changqing Oilfield Company,PetroChina,Yan'an 716000,China
    4.Qinghai Oilfield Branch Company of China National Petroleum Corporation,Dunhuang 736202,China
  • Received:2020-05-29 Revised:2020-06-23 Online:2021-01-10 Published:2021-02-04
  • Supported by:
    The Major Science and Technology Projects of CNPC(2019B-0603)

Abstract:

The Neogene in the Yiliping area of Qaidam Basin is a potential area of oil and gas exploration. In order to make clear its environmental characteristics of the ancient lakes sedimentary period and discusses the controlling factors of high quality hydrocarbon source rock development, we select the core samples from two wells—Well Li3 and Well Bo1 to analyze their organic geochemistry, carbon and oxygen isotope etc. The analysis and test results suggest that δ13C in the N22 of Well Li3 is between -6.4‰ and -1.7‰, with an average value of -3.2‰, and δ18O is between -11.8‰ and -6.4‰, with an average value of -9.2‰. In Well Bo1 of Man’ai Depression, the 13C of sedimentary carbonate rock of Shangganchaigou Formation is between -2.1 ‰ and -1.5‰, with an average value of -1.84‰, 18O is between -12.4‰ and -4.9‰, with an average value of -9.66‰. The Yiliping area is in a semi-open-open, brackish lake environment, with frequent oscillations in the lake plane, relatively low average temperature, and rapid climate change. Through the study of the relationship between sedimentary environment and source rock distribution, the relatively high quality source rock in study area mainly develops in the saline environment, which is consistent with the development characteristics of the source rock in the western Qaidam Basin. Meanwhile, the lake calm period, in which the climate is relatively warm and humid, also developed good source rocks. The salinization center of Yiliping area is an important direction of gas exploration.

Key words: Yiliping area, Carbon and oxygen isotope, Palaeo-sedimentary environment, Source rock

CLC Number: 

  • TE121.3

Fig.1

Tectonic setting of the study area (revised according to Ref.[15])"

Fig.2

N1 histogram of the Well Bo 1"

Fig.3

Photo of image body of the Wells Li 3 and Bo 1"

Fig.4

N22histogram of the Well Li 3"

Table 1

Isotopic test results of Wells Li 3 and Bo 1"

井号样品层系深度/mδ13C/‰δ18O/‰Z古温度/℃
博1N13 954.06-1.9-10.7118.116.9
N13 956.85-1.9-10118.413.5
N13 958-1.5-10.6118.916
N13 958.3-2-6.3120.1-1.4
N13 961-2.1-10.7117.716.5
N13 962.3-1.9-4.9121.0-6.3
N13 963.5-1.6-10119.013.5
N13 964-1.8-11.3118.819.6
N13 965.2-1.8-9.7118.812.2
N13 967-1.9-12.4117.224.7
里3N222 441.58-6.4-7.3110.62.3
N222 442.7-3.5-11.8114.321.9
N222 443-2.1-9.4118.311
N222 444-2-10.5118.016
N222 445-5.4-6.4113.1-1.4
N222 446-1.9-9.6118.611.8
N222 447-1.7-9.7119.012.2

Fig.5

Plot of average δ18O and δ13C values of lacustrine carbonate rocks in different stratigraphic units in comparison with δ18O and δ13C domains of primary lacustrine carbonates in open and closed lakes (according to the Refs.[23-26])"

Fig.6

Sedimentary facies of Upper Ganchaigou Formation of connecting wells from western Qaidam Basin to Yiliping Sag(the B-B’location is shown in Fig.1)"

Fig.7

Sedimentary facies of Upper Youshashan Formation of connecting wells from the western Qaidam Basin to Yiliping Sag(the C-C’location is shown in Fig.1)"

Fig.8

Development patterns of source rocks in the Yiliping Sag of Qaidam Basin"

Fig.9

Pattern of natural gas accumulation in Yiliping area(the A-A’ location is shown in Fig.1)"

1 付锁堂.柴达木盆地天然气勘探领域[J].中国石油勘探, 2014, 19(4): 2-8.
FU S T. Natural gas exploration in Qaidam Basin[J].China Petroleum Exploration,2014,19(4): 2-8.
2 付锁堂.柴达木盆地油气勘探潜在领域[J].中国石油勘探,2016, 21(5):1-9.
FU S T.Potential oil and gas exploration areas in Qaidam Basin[J].China Petroleum Exploration, 2016, 21(5):1-9.
3 曾旭,田继先,周飞,等.柴达木盆地中东部深层天然气成藏条件与勘探潜力[J].新疆石油地质,2015,36(1):30-34.
ZENG X, TIAN J X, ZHOU F, et al. Deep gas accumulation conditions and exploration targets in central-eastern Qaidam Basin[J].Xinjiang Petroleum Geology,2015,36(1):30-34.
4 谭彦虎,任冰,雷涛,等.柴达木盆地一里坪地区天然气成藏条件与勘探潜力[J].天然气地球科学,2012,23(5):891-896.
TAN Y H, REN B, LEI T, et al. The conditions of natural gas accumulation and exploration potential in Yiliping region,Qaidam Basin[J].Natural Gas Geoscience,2012,23(5):891-896.
5 JENNIFER A N, KATHY L, CATHERINE Y, et al. Climate-related cyclic deposition of carbonate and organic matter in Holocene lacustrine sediment, Lower Michigan, USA[J].Journal of Paleolimnology,2010,44 (1):1-13.
6 STEPHEN P H,CHRISTOPH K, CLEMENS V U,et al.Carbon and oxygen isotope records from the southern Eurasian seaway following the Triassic-Jurassic boundary: Parallel long-term enhanced carbon burial and seawater warming[J]. Earth-Science Reviews,2020,203,103131.
7 曹高社,余爽杰,孙凤余,等.豫西宜阳地区三叠纪早期孙家沟组上段湖相碳酸盐岩碳氧同位素和古环境分析[J].地质学报,2019,93(5):1137-1153.
CAO G S,YU S J,SUN F Y,et al.Carbon and Oxygen isotopic composition and palaeoenvironment analysis of lacustrine carbonate rocks in the upper member of Early Triassic Sunjiagou Formation, Yiyang area, western Henan Province[J].Acta Geologica Sinica,2019,93(5):1137-1153.
8 刘刚,周东升.微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J].石油实验地质,2007,29(3):308-310.
LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang Formation in the Jianghan Basin as an example[J].Petroleum Geology and Experiment,2007,29(3):308-310.
9 曲长胜,邱隆伟,杨勇强,等.吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J].地质学报,2017,91(3):605-616.
QU C S, QIU L W, YANG Y Q,et al.Carbon and Oxygen isotope compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar sag,NW China and their Paleolimnological significance[J].Acta Geologica Sinica,2017,91(3):605-616.
10 刘庆.渤海湾盆地东营凹陷烃源岩碳氧同位素组成及地质意义[J].石油实验地质,2017,39(2):247-252.
LIU Q. Composition and geologic significance of carbon and oxygen isotopes in hydrocarbon source rocks, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2017,39(2):247-252.
11 陈能贵,王艳清,徐峰,等.柴达木盆地新生界湖盆咸化特征及沉积响应[J].古地理学报,2015,17(3):371-380.
CHEN N G, WANG Y Q, XU F, et al.Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J].Journal of Palaeogeography,2015,17(3):371-380.
12 王艳清,张永庶,夏志远,等.柴达木盆地一里坪坳陷新生界咸化特征及生烃潜力分析[J].中国地质,2016, 43(4):1317-1330.
WANG Y Q, ZHANG Y S, XIA Z Y, et al. An analysis of Cenozoic hydrocarbon generation potential and salty characteristics of Yiliping depression in Qaidam Basin[J]. Geology in China,2016,43(4):1317-1330.
13 郭泽清,王宗礼,李雪峰,等.柴达木盆地一里坪地区新近系沉积相初探[J].古地理学报,2009,11(3):284-292.
GUO Z Q, WANG Z L, LI X F, et al.Preliminary study on sedimentary facies of the Neogene in Yiliping area, Qaidam Basin[J].Journal of Palaeogeography,2009,11(3):284-292.
14 郭佩.柴达木新生代湖盆咸化环境演变及其烃源岩发育特征[D].西安:西北大学,2018.
GUO P. Saline Environment Evolution of the Cenozoic Qaidam Palaeolake and the Characterizarion of its Hydrocarbon Source Rocks[D].Xi’an: Northwest University,2018.
15 陈琰,雷涛,张国卿,等.柴达木盆地石油地质条件、资源潜力及勘探方向[J].海相油气地质,2019,24(2):64-74.
CHEN Y, LEI T, ZHANG G Q, et al.The geological conditions, resource potential and exploration direction of oil in Qaidam Basin[J].Marine Origin Petroleum Geology,2019,24(2):64-74.
16 姜桂凤,孔红喜,徐子远,等.柴达木盆地一里坪地区油气成藏条件[J].新疆石油地质,2006,27(5):552-555.
JIANG G F, KONG H X, XU Z Y, et al. The hydrocarbon accunulation conditions of Neogene in Yiliping area of Qaidam Basin[J]. Xinjiang Petroleum Geology,2006,27(5):552-555.
17 MCKENZIE J A, HOLLANDER D J. Oxygen-isotope Record in Recent Carbonate Sediments from Lake Greifen,Switzer-land(1750-1986):Application of Continental Isotopic Indicator for Evaluation of Changes in Climate and Atmospheric Circulation Patterns[M]. Tulsa: Geophysical Monograph Series, 1993: 101-111.
18 张水昌, WANG R L, 金之钧,等.塔里木盆地寒武纪—奥陶纪优质烃源岩沉积与古环境变化的关系:碳氧同位素新证据[J].地质学报,2006,80(3):459-466.
ZHANG S C, WANG R L, JIN Z J, et al.The relationship between the Cambrian-Ordovician high-TOC source rock development and paleoenvironment variations in the Tarim Basin,western China Carbon and Oxygen isotope evidence[J].Acta Geologica Sinica,2006,80(3):459-466.
19 VEIZER J.Trace elements and isotopes in sedimentary carbonates[J].Reviews in Mineralogy,1983,11:265-300.
20 ANSARI A H, PANDEY S K, SHARMA M, et al. Carbon and Oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: Evidence for high amplitude carbon isotopic negative excursions[J]. Precambrian Research, 2018, 308: 75-91.
21 李进龙,陈东敬.古盐度定量研究方法综述[J].油气地质与采收率,2013,10(5):1-3.
LI J L, CHEN D J. Summary of quantified research method on paleosalinity[J]. Petroleum Geology and Recovery Efficiency,2003,10(5):1-3.
22 KEITH M L, WEBER J N. Carbon and Oxygen isotopic composition of selected limestones and fossils[J].Geochimica et Co-smochimica Acta,1964,28:1787-1816.
23 王春连,刘成林,徐海明,等.江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义[J].地球学报,2013,34(5):567-576.
WANG C L, LIU C L,XU H M, et al.Carbon and Oxygen isotopes characteristics of Palaeocene saline lake facies carbonates in Jiangling depression and their environmental significance[J].Acta Geoscientica Sinica,2013,34(5):567-576.
24 TALBOT M R, KELTS K. Paleolimnological signatures form carbon and oxygen isotopic ratios in carbonates form organic carbon-rich lacustrine sediments[M]// KATZ B J. Lacustrine Basin Exploration: Case Studies and Modern Analogs. AAPG Memoir 50, Tulsa: American Association of Petroleum Geologists, 1990:99-112.
25 刘传联,赵泉鸿,汪品先.湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J].地球化学,2001,30(4):363-367.
LIU C L, ZHAO Q H, WANG P X. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producting paleolakes[J].Geochimica,2001,30(4):363-367.
26 伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J].古地理学报,2007,9(3):303-312.
YI H S, LIN J H, ZHOU K K, et al. Carbon and Oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J].Journal of Palaeogeography,2007,9(3):303-312.
27 陈荣坤.稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J].沉积学报,1994,12(4):11-21.
CHEN R K. Application of stable oxygen and carbon isotope in the research of carbonate diagenetic environment[J]. Acta Sedimentologica Sinca,1994,12(4):11-21.
28 HENDY C H. The isotopic geochemistry of speleothems - I. The calculation of the effects of different modes of formation of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta,1971,35:801-824.
29 FRIEDMAN I, O'NEIL J R. Compilation of Stable Isotope Fractionation Fraction Factors of Geochemical Interest[M].Wa-shington:U.S.Geological Survey Professional Paper,1977,117.
30 MEYER B L, NEDERLOF M H. Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots[J]. AAPG Bulletin, 1984, 68:121-129.
31 LIU D L, Li H B, SUN Z M, et al. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, northeast Tibetan Plateau, comparison with LA-ICP-MS Zircon U-Pb ages[J].Gondwana Research,2017,41:438-450.
32 CHENG X G,LIN X B,WU L,et al. The exhumation history of north Qaidam thrust belt constrained by apatite fission track thermochronology: implication for the evolution of the Tibetan Plateau[J]. Acta Geologica Sinica: English Edition,2016,90(3):870-883.
33 王亚东,张涛,迟云平,等.柴达木盆地西部地区新生代演化特征与青藏高原隆升[J].地学前缘,2011,18(3):141-150.
WANG Y D, ZHANG T, CHI Y P, et al. Cenozoic uplift of the Tibetan Plateau: Evidence from tectonic-sedimentary evolution of the western Qaidam Basin[J].Earth Science Frontiers,2011,18(3):141-150.
34 张斌,何媛媛,陈琰,等.柴达木盆地西部咸化湖相优质烃源岩地球化学特征及成藏意义[J].石油学报,2017,38(10):1158-1167.
ZHANG B, HE Y Y, CHEN Y. et al.Geochemical characteristics and oil accumulation significance of the high quality saline lacustrine source rocks in the western Qaidam Basin, NW China[J].Acta Petrolei Sinica,2017,38(10):1158-1167.
35 李俊武,杨承锦,李凤杰,等.柴达木盆地鄂博梁地区新近系物源分析[J].古地理学报,2015,17(2):186-197.
LI J W, YANG C J, LI F J, et al. Provenance analysis of the Neogene in Eboliang area, Qaidam Basin[J].Journal of Palaeogeography,2015,17(2):186-197.
36 陈迎宾,胡烨,王彦青,等.柴达木盆地鄂博梁Ⅲ号构造深层天然气成藏条件[J].油气地质与采收率,2015,22(5):34-39.
CHEN Y B, HU Y, WANG Y Q, et al. Research on the deep gas accumulation conditions of Eboliang-III structure, Qaidam Basin[J].Petroleum Geology and Recovery Efficiency,2015,22(5):34-39.
[1] Yingchun GOU, Xiaojun ZHANG, Yanli LI, Shiming ZHANG, Jiumei QIN, Liangyu WU. Distribution of carbonate cements and enrichment characteristics of carbon and oxygen stable isotopes in sandstone reservoirs in Jiuxi Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1393-1402.
[2] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[3] Ye-tong WANG, Guo-qiang SUN, Shun-cun ZHANG, Bo CHEN, Wen-jun ZHU, Yun JIANG. Characteristics and genesis of carbonate cement in abdomen sandstone in northern margin of Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1037-1046.
[4] Hong-jun LIU, Zhi-li DU, Yi CHEN, Ya TIAN, Peng-bo ZHANG, Feng-qin WANG. Geochemical characteristics and geological significance of Carboniferous source rocks in Well Wudi 1, Wuwei Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1061-1072.
[5] Shi-ming LIU, Fu-rong TAN, Shu-heng TANG, Jin-xi WANG, Wei-chao WANG, Yong-hong LI. Restoration of “original organic carbon content” and its relationship with micropore evolution of the Middle Jurassic source rock in the Muli Depression, Southern Qilian Basin [J]. Natural Gas Geoscience, 2021, 32(7): 982-992.
[6] Guo-yi HU, Fei HE, Jing-kui MI, Yi-lin YUAN, Jin-hao GUO. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 319-333.
[7] Fei-fei GUO, Guang-di LIU. The distribution of high-quality source rocks in He3 Member and hydrocarbon accumulation characteristics in Nanyang Depression, Nanxiang Basin [J]. Natural Gas Geoscience, 2021, 32(3): 405-415.
[8] Hao-fei SUN, Bing LUO, Long WEN, Jin-xi WANG, Gang ZHOU, Hua-guo WEN, Fei HUO, Xin DAI, Chang-long HE. The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 233-247.
[9] Xincai YOU, Gang GAO, Jun WU, Jianyu ZHAO, Shiju LIU, Yanjuan DUAN. Differences of effectivity and geochemical characteristics of the Fengcheng Formation source rock in Ma’nan area of the Junggar Basin [J]. Natural Gas Geoscience, 2021, 32(11): 1697-1708.
[10] Yong-qian CUI, Fei-yu WANG, Chuan-bao ZHANG, Wei-ping FENG, Feng-xiang HOU, Xue-feng MA, Ying MA. Orgaofaices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance [J]. Natural Gas Geoscience, 2021, 32(1): 38-46.
[11] Ping GUO. Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1306-1315.
[12] Zi-cheng CAO, Dong-hua YOU, Li-xin QI, Lu YUN, Wen-xuan HU, Zong-jie LI, Yi-xiong QIAN, Yong-li LIU. New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis [J]. Natural Gas Geoscience, 2020, 31(7): 915-922.
[13] Lei YAN, Min YANG, Jun-long ZHANG, Ying-hui CAO, De-dao DU, Shan WANG, Zhao-hui XU, Hong-hui LI, Yi-min ZHAO. Distribution of Cambrian source rocks and evaluation and optimization of favorable zones in East Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 667-674.
[14] Ting-ting LI, Guang-you ZHU, Kun ZHAO, Peng-ju WANG. Nitrogen cycle and nitrogen isotope application in paleoenvironment reconstruction of ancient hydrocarbon source rocks and oil-source correlations [J]. Natural Gas Geoscience, 2020, 31(5): 721-734.
[15] Zeng-ye XIE, Chun-long YANG, Cai-yuan DONG, Xin DAI, Lu ZHANG, Jian-ying GUO, Ze-qing GUO, Zhi-sheng LI, Jin LI, Xue-ning QI. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin, China [J]. Natural Gas Geoscience, 2020, 31(4): 447-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] . [J]. Natural Gas Geoscience, 0, (): 6 .
[8] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[9] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[10] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .