Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (11): 1548-1561.doi: 10.11764/j.issn.1672-1926.2020.08.007

Previous Articles     Next Articles

Characteristics and main controlling factors of Ordovician deep subsalt reservoir in central and eastern Ordos Basin

Ling FU1(),Jian-zhong LI1,Wang-lin XU1,Wei GUO2,Ning-xi LI1,Yue-qiao ZHANG1,Wei SONG1,Yuan-shi SUN1   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.PetroChina Changqing Oil Field Branch Company,Xi’an 710018,China
  • Received:2020-07-20 Revised:2020-08-19 Online:2020-11-10 Published:2020-11-25

Abstract:

In recent years, the sub-salt dolomite reservoirs in the Ordovician strata of the Ordos Basin have indicated good exploration results and are expected to have a high hydrocarbon potential. This study targets the Ma 3-Ma 4 reservoirs below the salt rock of the Ordovician in the central and eastern Ordos Basin and investigate the reservoir characteristics and main controlling factors of high-potential reservoirs by combining core observations, cast slabs, scanning electron microscopy, physical property analysis and mercury injection data. The results show that the Ma 3 reservoirs are dominated by gypsum-bearing dolomite deposited in evaporation environments, whereas the Ma 4 reservoirs are dominated by calcite dolomite under transgressive environment. The types of Ma 4 reservoir space mainly include dissolved pores (dissolved holes), intra-crystalline pores, intra-crystalline dissolved pores and microcracks. The types of Ma 3 reservoirs space mainly include microcracks, gypsum mould pore dissolved pores (dissolved holes), and intergranular pores. The pore structures of reservoirs are complex. The capillary pressure curves can be divided into four types, including dissolved pore type, intra-crystalline (dissolved) pore type, microcrack type, and micro-porous type. Based on available information, the average porosity of the Ma 3-Ma 4 reservoirs are 2.1% and 2.3%, respectively, and the average permeability values are 0.19×10-3 μm2 and 0.22×10-3 μm2, respectively. The central paleo-uplift, Wushenqi secondary paleo-uplift and Shenmu low uplift controlled the sedimentary facies and favorable lithofacies distributions. Sedimentary microfacies control rock fabric, and the rock fabric affect physical properties of the reservoirs. The limestone and dolomite reservoirs with gypsum and sand cutting texture have relatively good physical properties. Diagenesis is also a key factor in the development of sub-salt reservoirs. Intra-crystalline pores are mainly formed under various dolomization mechanisms. The surficial and buried diagenetic environments facilitate the formation of a large number of secondary pores, such as dissolved pores (dissolved holes), intra-crystalline dissolved pores, gypsum mould pores. In addition, the Yanshan tectonic activity played a key role in the development of reservoir microcracks. The microcracks can significantly improve reservoir physical properties. We favor that the tectonic setting, rock fabric, diagenetic and microcrack alterations collectively determine the storage capacity of the sub-salt reservoirs and thus are the main controlling factors for the formation of high-quality reservoirs.

Key words: Ordos Basin, Sub-salt reservoirs, Reservoir space, Diagenesis, Paleo-uplift, MicrocrackFoundation items: The National Key R&D Program of China(Grant No. 2018YFC0603706), The National Science and Technology Major Project of China(Grant No.2016ZX05004), The Science and Technology Project of PetroChina Exploration and Production Company(Grant No. kt20180401)

CLC Number: 

  • TE122.1

Fig.1

Locations of study area and major structural units in the Ordos Basin(a) and comprehensive stratigraphic column of the Ordovician Majiagou Formation(b) in central and eastern part of the Ordos Basin"

Fig.2

Lithological association profile from east to west of the Majiagou Formation in central and eastern part of the Ordos Basin[see Fig.1(a) for the profile position]"

Fig.3

Petrologic characteristics of Ma 3-Ma 4 reservoirs"

Table 1

The mineral compositions of the Ma 3-Ma 4 reservoirs below the salt rock strata"

层位岩石组分/%样品数/块
方解石白云石硬石膏铁方解石硅质长石类伊利石黄铁矿石英
马三段2.659.731.00.41.00.40.30.20.1159
马四段57.637.90.80.00.30.00.20.00.0299

Fig.4

Reservoir space types and content distributions of the Ma 3-Ma 4 reservoirs"

Fig.5

Microscopic characteristics of the Ma 3-Ma 4 reservoirs space"

Table 2

Characteristic parameters of pore-throat structure of the Ma 3-Ma 4 reservoirs(according to mercury intrusion data)"

层位孔隙度 /%

渗透率

/(10-3 μm2)

均值偏态

分选

系数

中值压力

/MPa

中值半径

/μm

排驱压力

/MPa

最大进汞饱和度

/%

退汞效率

/%

样品数 /个
马三段3.90.1510.90.02.625.00.021.555.326.89
马四段3.30.2113.50.21.218.70.042.585.429.73

Fig.6

The types and characteristics of the rock pores of the Ma 3-Ma 4 reservoirs"

Fig.7

The properties and permeability values of the Ma 3-Ma 4 reservoirs"

Fig.8

East-west seismic profile in central and eastern part of the Ordos Basin (see Fig.9 for the G16-13 profile location)"

Fig.9

Reservoir thickness and structural superposition map of the Ordovician Ma 3-Ma 4 reservoirs in central and eastern part of the Ordos Basin"

Fig.10

Sedimentary model of the Ordovician Ma 3-Ma 4 members in the Ordos Basin"

Fig.11

Diagenetic environment model of the Ordovician Ma 3-Ma 4 members in the Ordos Basin"

Table 3

Thickness of fracture layer of the Ma 3-Ma 4 members(according to logging interpretation data)"

马四段陕50城川1余探1莲121莲6双131双147统79天深1高平1H那1
厚度/m2.614.511.70.912.63.310.632.22.526.9
马三段陕50城川1余探1榆9棋探1龙探2
厚度/m1.37.93.41063.8
1 付斯一,张成弓,陈洪德,等.鄂尔多斯盆地中东部奥陶系马家沟组五段盐下白云岩储集层特征及其形成演化[J].石油勘探与开发,2019,46(6):1087-1098.
FU S Y, ZHANG C G, CHEN H D, et al. Characteristics and formation evolution of subsalt dolomite reservoirs in the fifth member of the Ordovician Majiagou Formation in the central and eastern Ordos Basin[J].Petroleum Exploration and Development, 2019,46 (6): 1087-1098.
2 YANG H, FU S T, WEI X S. Geology and exploration of oil and gas in the Ordos Basin[J] Applied Geophysics, 2004,1(2): 103-109.
3 杨华,刘新社,张道锋,等.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气成藏主控因素及勘探进展[J].天然气工业,2013,33(5):1-12.
YANG H, LIU X S, ZHANG D F. Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration[J].Natural Gas In-dustry, 2013,33 (5):1-12.
4 付金华,吴兴宁,孙六一,等.鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义[J]. 天然气工业, 2017,37(3): 9-16.
FU J H, WU X N, SUN L Y, et al. New understanding of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance [J]. Natural Gas Industry, 2017,37 (3): 9-16.
5 杨华,付金华,魏新善,等.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气勘探领域[J].石油学报,2011,32(5):733-740.
YANG H, FU J H, WEI X S, et al. Exploration of Ordovician marine carbonate gas in the Ordos Basin[J]. Acta Petrolei Sinica,2011,32 (5): 733-740.
6 姚泾利,包洪平,任军峰,等. 鄂尔多斯盆地奥陶系盐下天然气勘探[J]. 中国石油勘探,2015,20(3):1-12.
YAO J, BAO H P, REN J F, et al. Exploration of Ordovician subsalt natural gas reservoirs in Ordos Basin[J]. China Petroleum Exploration,2015,20(3):1-12.
7 王从玮. 鄂尔多斯盆地中部奥陶系中组合盐下储层特征及主控因素[D]. 北京:中国石油大学(北京), 2016.
WANG C W. Characteristics and Main Controlling Factors of Subsalt Reservoirs in the Middle Ordovician in the Central Ordos Basin[D].Beijing:China University of Petroleum (Beijing), 2016.
8 贾亚妮,李振宏,郑聪斌,等.鄂尔多斯盆地东部奥陶系盐下储层预测[J].石油物探,2006,45(5):472-475.
JIA Y N, LI Z H, ZHENG C B, et al. Prediction of Ordovician subsalt reservoirs in the eastern Ordos Basin[J].Geophysical Prospecting for Petroleum, 2006,45 (5): 472-475.
9 蔡克汉,刘峰,张娜,等.鄂尔多斯盆地中东部盐下储层预测关键技术[J].石油地球物理勘探,2018,53(6):1263-1268.
CAI K H, LIU F, ZHANG N, et al. Key technologies for prediction of subsalt reservoirs in the central and eastern parts of Ordos Basin[J].Petroleum Geophysical Prospecting, 2018,53 (6): 1263-1268.
10 姚泾利,王程程,陈娟萍,等.鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J].天然气地球科学,2016,27(12):2115-2126.
YAO J L, WANG C C, CHEN J P, et al. Distribution characteristics of carbonate source rocks under salt in Majiagou Formation of Ordos Basin[J].Natural Gas Geoscience, 2016,27 (12) : 2115-2126.
11 夏明军,郑聪斌,戴金星,等.鄂尔多斯盆地东部奥陶系盐下储层及成藏条件分析[J].天然气地球科学,2007,18(2):204-208.
XIA M J, ZHENG C B, DAI J X, et al. Analysis of Ordovician subsalt reservoirs and accumulation conditions in the eastern Ordos Basin[J].Natural Gas Geoscience, 2007,18 (2): 204-208.
12 左智峰,熊鹰,何为,等.鄂尔多斯盆地中部马五段盐下储层成岩作用与孔隙演化[J].地质科技情报,2019,38(5):155-164.
ZUO Z F, XIONG Y, HE W, et al. Diagenesis and pore evolution of subsalt reservoirs in the Ma 5 Member of the central Ordos Basin[J].Geological Science and Technology Intelligence, 2019, 38 (5): 155-164.
13 吴东旭,孙六一,周进高,等.鄂尔多斯盆地西缘克里摩里组白云岩储层特征及成因[J].天然气工业,2019,39(6):51-62.
WU D X, SUN L Y, ZHOU J G, et al. Characteristics and genesis of dolomite reservoirs in the Cremori Formation in the western margin of Ordos Basin[J].Natural Gas Industry, 2019,39 (6): 51-62.
14 李雅雯,王兴志,展燕,等.埋藏条件下碳酸盐岩储层溶蚀作用实验模拟——以鄂尔多斯盆地西缘奥陶系碳为例[J].海洋地质前沿,2020,36(2):43-52.
LI Y W, WANG X Z, ZHAN Y, et al. Experimental simulation of dissolution of carbonate reservoirs under burial conditions: A case study of Ordovician carbon in the western margin of the Ordos Basin[J]. Marine Geology Frontiers, 2020, 36 (2): 43-52.
15 李国蓉. 从成岩角度看鄂尔多斯马家沟组碳酸盐岩中的裂缝及其储集意义[J].岩相古地理,1997,17(3):46-53.
LI G R. Diagenesis of the carbonate rocks of the Majiagou Formation in the Ordos Basin: Fractures and their implications for oil and gas storage[J]. Sedimentary Facies and Palaeogeography,1997,17(3):46-53.
16 苗胜东. 鄂尔多斯盆地中东部奥陶系中下组合构造特征及控气性[D].西安:西安石油大学,2018.
MIAO S D. Structural Characteristics and Controlling Gas of Ordovician Middle Lower Assemblages in Eastern and Middle Ordos Basin[D]. Xi’an:Xi’an Shiyou University, 2018.
17 张春林,李剑,陈鑫,等. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019,30(9):1263-1271.
ZHANG C L, LI J, CHEN X, et al. Palaeogeomorphological restoration of Orodovician subsalt and its controlling effect on beach bodies, eastern Ordos Basin[J]. Natural Gas Geoscience, 2019,30(9):1263-1271.
18 周进高,席胜利,邓红婴,等. 鄂尔多斯盆地寒武系—奥陶系深层海相碳酸盐岩构造—岩相古地理特征[J]. 天然气工业,2020,40(2):41-53.
ZHOU J G, XI S L, DENG H Y, et al. Tectonic-lithofacies paleogeographic characteristics of Cambrian-Ordovician deep marine carbonate rocks in the Ordos Basin[J]. Natural Gas Industry,2020,40(2):41-53.
19 张亚金,张湘娟,张振伟,等.古城地区奥陶系鹰山组白云岩储层特征及其控制因素[J].大庆石油地质与开发, 2020,39(4): 1-8.
ZHANG Y J, ZHANG X J, ZHANG Z W,et al. Dolomite reservoir characteristics and controlling factors of the Ordovician Yingshan Formation in Gucheng area[J]. Daqing Petroleum Geology and Development, 2020,39(4): 1-8.
20 杨晓兰.南大西洋中段两岸盆地盐下油气成藏特征对比[J].海洋石油,2019,39(3):1-8.
YANG X L. Comparison of hydrocarbon accumulation characteristics between subsalt basins on both sides of the basin in the middle South Atlantic[J]. Offshore Oil, 2019,39 (3): 1-8.
21 何保,燕亚东,禚喜准,等.柴达木盆地石灰沟地区下古生界碳酸盐岩储层特征及控制因素[J].海相油气地质,2019,24(1):35-43.
HE B, YAN Y D, ZHUO X Z, et al. Characteristics and controlling factors of carbonate reservoirs in the Lower Paleozoic in Limegou area, Qaidam Basin[J]. Marine Petroleum Geology, 2019, 24 (1): 35-43.
22 康洪全,吕杰,程涛,等.巴西桑托斯盆地盐下湖相碳酸盐岩储层特征[J].海洋地质与第四纪地质,2018,38(4):170-178.
KANG H Q, LV J, CHENG T, et al. Characteristics of the carbonate reservoirs in the salt lakes of the Santos Basin, Brazil[J]. Marine Geology and Quaternary Geology, 2018,38 (4): 170-178.
23 丁茜,何治亮,沃玉进,等.高温高压条件下碳酸盐岩溶蚀过程控制因素[J].石油与天然气地质,2017,38(4):784-791.
DING Q, HE Z L, WO Y J, et al. Control factors of carbonate rock dissolution process under high temperature and pressure conditions[J]. Oil & Gas Geology, 2017,38 (4): 784-791.
24 杨晓林.逆冲带盐下碳酸盐岩储层预测[D]. 北京:中国石油大学(北京),2016.
YANG X L. Pre-salt Carbonate Reservoir Prediction in the Thrust Belt[D]. Beijing: University of Petroleum (Beijing),2016.
25 郭栋. 坎波斯盆地盐下含油气系统分析与资源评价[D]. 北京:中国石油大学(北京),2016.
GUO D. Analysis and Resource Evaluation of Subsalt Petroleum System in Campos Basin[D]. Beijing:China University of Petroleum (Beijing), 2016.
26 赵国祥,王清斌,杨波,等.渤中凹陷奥陶系深埋环境下碳酸盐岩溶蚀成因分析[J].天然气地球科学,2016,27(1):111-120.
ZHAO G X, WANG Q B, YANG B, et al. Analysis of carbonate rock dissolution origination in the deep Ordovician environment of Bozhong Sag[J].Natural Gas Geoscience, 2016,27 (1): 111-120.
27 何治亮,马永生,张军涛,等.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质,2020,41(1):1-14.
HE Z L, MA Y S, ZHANG J T, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil and Gas Geology, 2020,41(1):1-14.
28 周生友,许杰,马艳,等.滨里海盆地F区块盐下深层碳酸盐岩相控储层预测[J].中山大学学报:自然科学版,2013,52(4):138-142.
ZHOU S Y, XU J, MA Y, et al. Facies-constrained reservoir prediction of the pre-salt carbonate reservoir deeply buried in F-Block of the Caspain Basin[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013,52(4): 138-142.
29 周振柱. 东营凹陷“盐下”深层温压场演化与油气成藏[D].北京:中国石油大学,2011.
ZHOU Z Z. Evolution of Deep Sub-salt Temperature and Pressure Field and Hydrocarbon Accumulation in Dongying Sag[D].Beijing:China University of Petroleum, 2011.
30 何晓松,孙林,张红斌,等.盐下碳酸盐岩储层礁体识别[J].石油地球物理勘探,2009,44(s1):98-100.
HE X S, SUN L, ZHANG H B, et al. Identification of subsalt carbonate reservoirs and reefs[J].Petroleum Geophysical Prospecting, 2009,44 (s1): 98-100.
[1] Song LI, Ling LIU, Jiang WU, Lin-lin WANG, Zhi-li ZHANG. Diagenetic evolution of tight sandstone of Shanxi-Lower Shihezi formations in the southern Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(1): 47-56.
[2] Yuan LI, Xiong DING, Xing-zhi WANG, Yuan-hao LI, Hang-hang YU. Structural characteristics of sand bodies in shallow-water deltas in the Chang 8 Member of Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(1): 57-72.
[3] Fu-tai JING, Xia LUO, Zhi YANG, Li-jun ZHANG, Shi-xiang LI, Yong CHEN, Yun-feng ZENG. Study on the porosity and permeability cutoffs of tight sandstones in shale stratum: Case study of Chang7 Member of the Triassic Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(6): 835-845.
[4] Ke WANG, Rong-hu ZHANG, Chao-feng YU, Zhao YANG, Yan-gang TANG, Hong-xing WEI. Characteristics and controlling factors of Jurassic Ahe reservoir of the northern tectonic belt, Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 623-635.
[5] Zhou YU, Jin-gao ZHOU, Zhen-chun DING, Liu-bin WEI, Yuan WEI, Xin-ning WU, Dong-xu WU, Shao-yi WANG, Wei-ling LI. Reservoir characteristics and genesis of O1m54-1a in the central and eastern Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(5): 686-697.
[6] Kun-peng SONG,Jing-lan LUO,Xin-she LIU,Yun-dong HOU,Wei-yan SHENG,Jiang-jun CAO,Qian-ru MAO. Characteristics and genetic mechanism of carbonate cements in Upper Paleozoic tight sandstones, southwestern Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(11): 1562-1573.
[7] Rui LIU, Shao-bin GUO, Ji-yuan WANG. TOC calculation model of source rocks: Case study from Taiyuan-Shanxi formations in Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(11): 1628-1636.
[8] Xiao-wei LIANG,Zi-xuan GUAN,Xiao-bing NIU,Ping GUAN,Wei-dong DAN,Sheng-bin FENG,Yuan YOU,Shu-xun ZHOU. Reservoir characteristics of shale oil in Chang 7 Member of Yanchang Formation,Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(10): 1489-1500.
[9] Wen-ya LÜ, Lian-bo ZENG, Si-bin ZHOU, Yuan-yuan JI, Feng LIANG, Chen HUI, Jia-sheng WEI. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield [J]. Natural Gas Geoscience, 2020, 31(1): 37-46.
[10] Chun-lin Zhang, Jian Li, Xin Chen, Qing-chao Wu. Palaeogeomorphological restoration of Ordovician subsalt and its controlling effect on beach bodies, eastern Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1263-1271.
[11] Wu Song-tao, Lin Shi-yao, Chao Dai-jun, Zhai Xiu-fen, Wang Xiao-rui, Huang Xiu, Xu Jia-le. Fluid mobility evaluation based on pore structure investigation in tight sandstones:Case study of Upper Triassic Chang 6 tight sandstones in Huaqing area,Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1222-1232.
[12] You Yuan, Liang Xiao-wei, Feng Sheng-bin, Niu Xiao-bing, Dan Wei-dong, Li Wei-cheng, Wang Fang, . Features and geological significance of main clay minerals in Chang 7 tight sandstone reservoir,Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1233-1241.
[13] Cui Jing-wei, Zhu Ru-kai, Li Sen, Qi Ya-lin, Shi Xiao-zhang, Mao Zhi-guo, . Development patterns of source rocks in depression lake basin and its controlling effect on oil accumulation:Case study of the Chang 7 shale of the Triassic Yanchang Formation,Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(7): 982-996.
[14] Li Yang, Ni Xiao-ming, Wang Yan-bing, Tao Chuan-qi. Pressure characteristics and genetic mechanism of Upper Paleozoic in Linxing area of Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(7): 997-1005.
[15] Wu Xiao-qi, Ni Chun-hua, Chen Ying-bin, Zhu Jian-hui, Li Kuang, Zeng Hua-sheng. Source of the Upper Paleozoic natural gas in Dingbei area in the Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(6): 819-827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[2] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[3] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .
[4] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .
[5] SHI Li-zhi;LIN Tie-fen;WANG Zhen-liang;WANG Zhuo-zhuo;YAO Yong. RESEARCH ON THE MIGRATION AND ACCUMULATION SYSTEMS OF NATURAL GAS AND HYDROCARBON MIGRATION OF THE LOWER CRETACEOUS STRATA IN KUQA DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 78 -83 .
[6] WANG Ru. GEOCHEMICAL CHARACTERISTICS AND HYDROCARBON RESERVOIR FORMING PROCESURE ANALYSIS OF TWO TERMS OF RESERVOIR FORMING IN SHENGTUO OI LFIELD[J]. Natural Gas Geoscience, 2006, 17(1): 133 -136 .
[7] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[8] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[9] ZHU Zhi-min~1,SHEN Bing~1,YAN Jian-fei~2. DISCUSS ON INORGANIC NATURAL GAS IN THE FUXIN BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 418 -421 .
[10] NI Jin-long,Lü Bao-feng,XIA Bin. FAULT SYSTEM OF GENTLE SLOPE BELT AND ITS AFFECT ON THE FORM OF OIL-GAS RESERVOIRS OF KONGDANG SET IN BAMIANHE RAMP OF DONGYING DEPRESSION, EASTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(3): 370 -373 .