Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (11): 1562-1573.doi: 10.11764/j.issn.1672-1926.2020.08.003

Previous Articles     Next Articles

Characteristics and genetic mechanism of carbonate cements in Upper Paleozoic tight sandstones, southwestern Ordos Basin

Kun-peng SONG1(),Jing-lan LUO1(),Xin-she LIU2,Yun-dong HOU2,Wei-yan SHENG1,Jiang-jun CAO1,Qian-ru MAO1   

  1. 1.State Key Laboratory of Continental Dynamics,Northwest University,Xi’an 710069,China
    2.Research Institute of Exploration and Development,Changqing Oil Field Company,PetroChina,Xi’an 710021,China
  • Received:2020-05-23 Revised:2020-08-06 Online:2020-11-10 Published:2020-11-24
  • Contact: Jing-lan LUO E-mail:1210384070@qq.com;jlluo@nwu.edu.cn

Abstract:

This study performed the analysis of genetic mechanism of carbonate cements from the tight sandstone reservoir of He8 member of Upper Paleozoic in southwestern Ordos Basin, based on measurement of thin sections identification, scanning electron microscopy, electron microprobe, micro-area carbon and oxygen isotope, homogenization temperature and laser Raman composition analysis of fluid inclusions. In this study, a comparative analysis was made between the drilling core in the basin and the outcrop in the southwest margin of the basin. The results show that there are four stages of carbonate cementation. (1) During the syngenetic stage, carbonate cement precipitated directly from the carbonate supersaturated sedimentary water, which was formed before the hydrocarbon charge. (2) The formation of carbonate cements in period B of early diagenetic stage and period A of middle diagenetic stage was related to organic carbon sources provided by hydrocarbon generation and expulsion in source rock. (3) Carbonate cements formed in uplift stage of the basin during middle diagenetic stage was affected by inorganic carbon sources such as atmospheric precipitation. The hydrocarbon charge of the southwestern margin of the basin started at the early stage of source rock evolution(around 80 ℃), a large-scale carbonate cement of organic carbon origin was formed in the period B of early diagenetic stage. The major hydrocarbon charge inside the basin began after the maturity of source rock (about 120 ℃), and carbonate cement of organic carbon origin was mainly formed in the period A stage of middle diagenetic stage.

Key words: Origin of carbonate cements, Stable carbon and oxygen isotopes, Fluid inclusions, Upper Paleozoic, Ordos BasinFoundation item:The National Science and Technology Key Project of China (Grant No. 2017ZX05008-004-004-001).

CLC Number: 

  • TE122

Fig.1

Tectonic geographical location of the study area (according to Ref.[15])"

Fig.2

Photomicrographs of carbonate cements"

Fig.3

Scanning electron micrograph and energy spectrum characteristics of typical carbonate cement"

Table 1

Stable carbon and oxygen isotopic characteristics of carbonate cement in He8 member of study area"

编号样品来源

胶结

期次

取样方法

δ13C/‰

(PDB)

δ18O/‰

(PDB)

古盐度

(Z)

古温度/℃

δ18OSMOW

=-6.5‰

δ18OSMOW

=-1.5‰

δ18OSMOW

=-0‰

CT2-02城探2(3 811.1 m)Ⅰ期钻具微区取样-10.0-14.099.993.2107.2
Long21-04b陇21(3 910.4 m)Ⅰ期钻具微区取样-10.4-14.998.6101.3116.4
Long21-04a陇21(3 910.4 m)Ⅰ期钻具微区取样-10.5-14.898.5101.0116.0
Long22-03b陇22(3 550.1 m)Ⅱ期钻具微区取样-14.9-14.389.796.4110.9
Long22-03a陇22(3 550.1 m)Ⅱ期钻具微区取样-14.4-14.590.597.9112.6
ZT2-03镇探2(5 033.5 m)Ⅱ期钻具微区取样-6.5-15.1106.5104.0119.4
Long14-04陇14(3 904.0 m)Ⅱ期钻具微区取样-4.1-15.0111.5102.9118.1
Luo-02b洛2(2 914.0 m)Ⅱ期激光微取样法-14.6-17.089.0123.9156.1
Luo-02a洛2(2 914.0 m)Ⅱ期激光微取样法-12.6-18.092.5136.2141.9
Long14-02陇14(3 905.0 m)Ⅲ期激光微取样法-5.3-8.6112.252.862.6
18PL2-02a露头Ⅰ期激光微取样法-8.0-9.9106.032.2
18PL2-02b露头Ⅰ期激光微取样法-7.3-9.9107.532.1
18EDG4-02b露头Ⅰ期钻具微区取样-6.1-10.7109.536.3
18EDG4-02a露头Ⅰ期钻具微区取样-6.0-10.9109.637.0
18EDG7-01c露头Ⅱ期钻具微区取样-6.9-12.6106.981.394.0
18EDG7-01b露头Ⅱ期钻具微区取样-6.8-12.3107.379.091.4
18EDG7-01a露头Ⅱ期钻具微区取样-6.6-11.7107.974.486.4
18EDG-6b露头Ⅲ期钻具微区取样-8.6-12.4103.680.092.5
18EDG-6a露头Ⅲ期钻具微区取样-9.2-13.5101.888.6102.1
18PL2-03b露头Ⅲ期激光微取样法-15.0-14.789.399.9114.7
18EDG10-02c露头Ⅳ期钻具微区取样-7.9-8.8106.754.164.0
18EDG10-02b露头Ⅳ期钻具微区取样-8.1-10.1105.663.173.8
18EDG10-02a露头Ⅳ期钻具微区取样-8.1-8.7106.553.663.4
18EDG1-02c露头Ⅳ期钻具微区取样-7.0-12.0106.976.889.0
18EDG1-02b露头Ⅳ期钻具微区取样-9.5-10.5102.765.776.7
18EDG1-02a露头Ⅳ期钻具微区取样-7.1-11.8106.975.487.5

Fig.4

Petrographic characteristics of fluid inclusions in He8 member"

Fig.5

Homogeneous temperature distribution range of fluid inclusions in He8 member of study area"

Fig.6

Laser Raman spectrum of typical fluid inclusions in He8 member"

Fig.7

Buried thermal evolution history of the Upper Paleozoic reservoir in the southwestern Ordos Basin(according to Refs. [22-23])"

Fig.8

Identification of carbonate cement material source in He8 sandstone reservoir (according to Ref.[25])"

Fig.9

Diagram of cement content vs porosity and permeability"

1 胡维强, 赵靖舟, 李军, 等. 鄂尔多斯盆地西南部上古生界烃源岩特征及其对天然气藏形成与分布的控制作用[J]. 天然气地球科学, 2015,26(6):1068-1075.
HU W Q, ZHAO J Z, LI J, et al. Characteristics of source rocks and its controls on the formation and distribution of gas from Upper Paleozoic in southwest Ordos Basin[J]. Natural Gas Geoscience, 2015,26(6):1068-1075.
2 翁凯, 李鑫, 李荣西, 等. 鄂尔多斯盆地东南部上古生界烃源岩评价及有利区预测[J]. 特种油气藏, 2012,19(5):21-25.
WENG K,LI X, LI R X, et al. Evaluation of Upper Paleozoic source rocks and favorable region prediction in the southeast of Ordos Basin[J].Special Oil & Gas Reservoir,2012,19(5):21-25.
3 王红伟, 陈调胜, 刘宝宪, 等. 鄂尔多斯盆地西南部地区上古生界砂体地震预测及勘探新突破[J].地球物理学进展,2013,28(4):2132-2140.
WANG H W, CHEN T S, LIU B X, et al. Seismic prediction of sand body in Upper Paleozoic and new exploration breakthrough in southwest Ordos Basin[J].Progress in Geophy-sics, 2013,28(4): 2132-2140.
4 王禹诺, 曹青, 刘宝宪, 等. 鄂尔多斯盆地西南部致密砂岩气成藏主控因素[J]. 特种油气藏, 2016,23(4):81-84.
WANG Y N,CAO Q,LIU B X, et al. Key controlling-factors of tight sandstone gas accumulation in the southwestern Ordos Basin[J]. Special Oil & Gas Reservoir, 2016,23(4): 81-84.
5 汪远征,黄文辉,闫德宇,等.鄂尔多斯盆地西南部山1、盒8段孔隙特征及物性研究[J].科学技术与工程,2015,15(32):14-21.
WANG Y Z, HUANG W H, YAN D Y, et al. Research on pore characteristics and petrophysical properties of Pls1 and Plh8 Members in the southwest of Ordos Basin[J].Science Te-chnology and Engineering, 2015,15(32):14-21.
6 久博, 黄文辉, 王雅婷, 等. 鄂尔多斯盆地南部煤系致密砂岩胶结作用对储层物性的影响[J]. 煤炭学报, 2018,43(9):2543-2552.
JIU B, HUANG W H, WANG Y T, et al. Effect of coal-measure tight sandstone cementation on reservoir physical propertiy in the south of Ordos Basin[J]. Journal of China Coal Society, 2018,43(9):2543-2552.
7 胡宗全. 鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J]. 石油学报, 2003,24(4):40-43.
HU Z Q. Calcite cements in Upper Paleozoic sand reservoir of Ordos Basin[J]. Acta Petrolei Sinica, 2003,24(4): 40-43.
8 李杪, 侯云东, 罗静兰, 等. 致密砂岩储层埋藏—成岩—油气充注演化过程与孔隙演化定量分析——以鄂尔多斯盆地东部上古生界盒8段天然气储层为例[J]. 石油与天然气地质, 2016,37(6):882-892.
LI M, HOU Y D, LUO J L, et al. Burial, diagenesis hydrocarbon charging evolution process and quantitative analysis of porosity evolution: A case study from H8 tight sand gas reservoir of the Upper Paleozoic in eastern Ordos Basin[J]. Oil & Gas geology, 2016,37(6):882-892.
9 罗静兰, 刘新社, 付晓燕, 等. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响:以鄂尔多斯盆地上古生界盒8天然气储层为例[J]. 地球科学:中国地质大学学报, 2014,39(5):537-545.
LUO J L, LIU X S, FU X Y, et al. Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield: A case study from He8 gas-bearing reservoir of Upper Paleozoic in the northern Ordos Basin[J]. Earth Science, 2014,39(5): 537-545.
10 刘晓鹏. 鄂尔多斯盆地上古生界盒8段方解石胶结物成因分析[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会,西安, 2017:435-436.
LIU X P. Origin analysis of calcite cement in He8 member of Upper Paleozoic in Ordos Basin[C] //the 9th National Congress and 16th Annual Conference of China Society of mineral geochemistry, Xi'an, 2017:435-436.
11 孙六一, 赵靖舟, 李军, 等. 鄂尔多斯盆地陇东地区上古生界天然气成藏模式[J]. 天然气地球科学, 2015,26(11):2029-2038.
SUN L Y, ZHAO J Z, LI J, et al. Hydrocarbon accumulation patterns of the Upper Paleozoic in Longdong area, Ordos Basin[J]. Natural Gas Geoscience, 2015,26(11):2029-2038.
12 陈全红. 鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D]. 西安:西北大学, 2007:141-143.
CHEN Q H. Research on the Upper Paleozoic sedimentary system and hydrocarbon accumulation in Ordos Basin[D].Xi'-an: Northwest University, 2007:141-143.
13 肖建新, 孙粉锦, 何乃祥, 等. 鄂尔多斯盆地二叠系山西组及下石盒子组盒8段南北物源沉积汇水区与古地理[J]. 古地理学报, 2008,10(4):341-354.
XIAO J X, SUN F J, HE N X, et al. Permian Shanxi Formation and member 8 of Xiashihezi Formation in Ordos Basin: Palaeogeography and catchment area for sediments derived from north and south provenances [J]. Journal of Palaeogeography, 2008,10(4):341-354.
14 王璇, 罗顺社, 王睿, 等. 鄂尔多斯盆地三角洲沉积体系及演化规律——以西南部二叠系山1、盒8段为例[J]. 科学技术与工程, 2014(31):25-31.
WANG X, LUO S S, WANG R, et al. Delta sedimentary system and evolution of Ordos Basin:With the example of the southwest region of Shan1 and He8 members, Permian[J]. Science Technology and Engineering, 2014(31):25-31.
15 付斌, 李进步, 张晨, 等. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020,31(1):143-149.
FU B, LI J B, ZHANG C, et al. Improvement of well pattern in development area of tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2020,31(1):143-149.
16 卢焕章, 范宏瑞, 倪培, 等.流体包裹体[M]. 北京:科学出版社, 2004:20-28.
LU H Z, FAN H R, NI P, et al. Fluid Inclusions [M]. Beijing: Science Press, 2004:20-28.
17 时华星, 宋明水, 徐春华, 等.煤型气地质综合研究思路与方法[M].北京:地质出版社, 2004:137-149.
SHI H X, SONG M S, XU C H, et al. Thoughts and Methods of Comprehensive Research on Coal Gas Geology[M]. Beijing: Geological Press, 2004:137-149.
18 李军,王禹诺,赵靖舟,等.鄂尔多斯盆地陇东地区上古生界天然气富集规律[J].石油与天然气地质,2016,37(2):180-188.
LI J, WANG Y N, ZHAO J Z, et al. Accumulation patterns of natural gas in the Upper Paleozoic in Longdong area, Ordos Basin[J]. Oil & Gas geology, 2016,37(2):180-188.
19 何生, 叶加仁, 徐思煌, 等.石油及天然气地质学[M].武汉: 中国地质大学出版社, 2010:147-181.
HE S, YE J R, XU S H, et al. Oil and Gas Geology[M].Wuhan: China University of Geosciences Press, 2010:147-181.
20 赵靖舟, 付金华, 姚泾利, 等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J]. 石油学报, 2012,33(S1):37-52.
ZHAO J Z, FU J H, YAO J L, et al. Quasi-continuous accumulation model of large tight sandstone gas field in Ordos Basin[J]. Acta Petrolei Sinica, 2012,33(S1):37-52.
21 MACK G H,COLE D R,GIORDANO T H,et al.Paleoclima-tic controls on stable oxygen and carbon isotopes in caliche of the Abo Formation (Permian),south-central New Mexico,USA[J]. Journal of Sedimentary Petrology, 1991,61(4):458-472.
22 曹青, 高俊梅, 范立勇, 等. 鄂尔多斯盆地西南部上古生界流体包裹体特征及其意义[J]. 天然气地球科学, 2015,26(12):2245-2253.
CAO Q,GAO J M,FAN L Y,et al. Characteristics and significance of fluid inclusions in Upper Paleozoic of southwest Ordos Basin[J].Natural Gas Geoscience,2015,26(12):2245-2253.
23 赵红格, 刘池洋, 姚亚明, 等. 鄂尔多斯盆地西缘差异抬升的裂变径迹证据[J]. 西北大学学报:自然科学版, 2007,37(3):470-474.
ZHAO H G, LIU C Y, YAO Y M, et al. Differential uplift in the western margin of Ordos Basin since Mesozoic from the fission track evidence[J]. Journal of Northwest University: Natural Science Edition, 2007,37(3):470-474.
24 ROZANSKI A A, ARAGUAS-ARAGUAS L, GONFIANTINI R. Isotopic patterns in global precipitation[J]. Washington Dc American Geophysical Union Geophysical Monograph, 1992,78:1-36.
25 郭宏莉, 王大锐. 塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析[J]. 石油勘探与开发, 1999,26(3):31-33.
GUO H L, WANG D R. Isotopic composition and genesis analysis of carbonate cement in sandstone reservoirs of Tarim Oil and Gas Area[J].Petroleum Exploration and Development, 1999,26(3):31-33.
26 SCHOBBEN M, ULLMANN C V, LEDA L, et al. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian--Triassic boundary of Iran[J]. Chemical Geology, 2016,422:94-107.
27 WU H, HU W, TANG Y, et al. The impact of organic fluids on the carbon isotopic compositions of carbonate-rich reservoirs: Case study of the Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China[J]. Marine and Petroleum Geology, 2017,85:136-150.
28 HOEFS J. Stable Isotope Geochemistry[M].Springer, 2009:363-367.
29 KEITH M L, WEBER J N. Carbon and Oxygen isotopic composition of selected limestones and fossils[J]. Geochimica Et Cosmochimica Acta, 1964,28(10):1787-1816.
30 ARMENTEROS I. Diagenesis of carbonates in continental settings[J]. Developments in Sedimentology, 2010,62:61-151.
31 FRIEDMAN I, O'NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest[R].US Government Printing Office, 1977:1-11.
32 O'NEIL J R. Stable Isotope Geochemistry of Rocks and Minerals[M].Lectures in Isotope Geology. Springer,1979:235-263.
33 KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995,73(1-4):49.
34 FISHER J B, BOLES J R. Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: Diagenetic controls on water composition[J]. Chemical Geology, 1990,82:83-101.
35 佘敏, 寿建峰, 沈安江, 等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016,43(4):564-572.
SHE M, SHOU J F, SHEN A J, et al. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016,43 (4): 564-572.
36 朱翔, 陈倩倩, 伏美燕, 等. 多种流体体系与砂岩水岩反应的实验研究[J]. 海相油气地质, 2018,23(2):17-24.
ZHU X, CHEN Q Q, FU M Y, et al. Experimental study on water-rock reaction of sandstone in various fluid systems[J]. Marine Petroleum Geology, 2018,23(2): 17-24.
37 MA B B, CAO Y, ZHANG Y, et al. Role of CO2-water-rock interactions and implications for CO2 sequestration in Eocene deeply buried sandstones in the Bonan Sag, eastern Bohai Bay Basin, China[J]. Chemical Geology, 2020:119585.
38 MORAD S. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution (IAS Special Publication 26)[M].Oxford:Blackwell Science, 1998.
39 张兴良, 田景春, 王峰, 等. 致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例[J]. 石油与天然气地质, 2014,35(2):212-217.
ZHANG X L, TIAN J C, WANG F, et al. Diagenetic characteristics and quantitative porosity estimation of tight sandstone reservoirs: A case from the 8th member of Permain Xianshihezi formation in the Gaoqiao region Ordos Basin[J]. Oil & Gas Geology, 2014,35(2):212-217.
40 王猛, 曾明, 陈鸿傲, 等. 储层致密化影响因素分析与有利成岩相带预测——以马岭油田长8油层组砂岩储层为例[J]. 岩性油气藏, 2017,29(1):59-70.
WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies: A case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield,Ordos Basin[J].Lithologic Reservoirs, 2017,29(1):59-70.
[1] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[2] Bi-wei WANG, Xin-de XU, Yang-yu WU, Jun-jun YOU, Ming-zhu LEI. Oil-gas origin and accumulation characteristics of Wenchang Depression, western Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2020, 31(7): 980-992.
[3] Ge Yan,Zhu Guang-hui,Wan Huan,Pan Xin-zhi,Huang Zhi-long. The influence of Zijinshan structural belt to the formation and distribution of tightsandstone gas reservoir in Upper Paleozoic,in the eastern Ordos Basin [J]. Natural Gas Geoscience, 2018, 29(4): 491-499.
[4] Xing Zhou,Cao Gao-she,Bi Jing-hao,Zhou Xin-gui,Zhang Jiao-dong. The evaluation of Upper Paleozoic hydrocarbon source rocks of ZK0606 in Yuzhou region at southern North China Basin [J]. Natural Gas Geoscience, 2018, 29(4): 518-528.
[5] Bao Jian-ping,He Dan,Zhu Cui-shan,Liu Yu-rui,Wang Wen-jun,Liu Hong-yu. Geochemical characteristics and origin of a crude oil from Well Xuwen X3 in the Maichen Sag,Beibuwan Basin,China [J]. Natural Gas Geoscience, 2017, 28(5): 665-676.
[6] Zhang Jiao-dong,Zeng Qiu-nan,Zhou Xin-gui,Liu Xu-feng,Zhang Hong-da,Wang Yu-fang,Bi Cai-qin,Cao Jian-kang,Du Jian-bo,Yu Ming-de,Zhang Yang,Chang Da-yu,Wang Fu-bin,Miao Hui-xin. Drilling achievements and gas accumulation in the Upper Paleozoic in western new area of Taikang Uplift,Southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1637-1649.
[7] Wang Ping, Pan Wen-Lei, Chen Ying-Bing, Wu Xiao-Qi, Wang Bao-Hua. The hydrocarbon accumulation timing of T3x4 natural gas reservoir in the central Western Sichuan Depression [J]. Natural Gas Geoscience, 2016, 27(8): 1419-1426.
[8] Gui Lili,Zhao Mengjun,Liu Keyu,Luo Mi,Meng Qingyang,Yuan Li,Hao Jiaqing. Reservoir fluid evolution and hydrocarbon charge history of the Gasi E13 Oilfield,southwestern Qaidam Basin [J]. Natural Gas Geoscience, 2016, 27(2): 289-297.
[9] Tian Xia-he, Qu Hong-jun, Liu Xin-she, Yang Huan, Dong Wen-wu, Chen Ya-hui. Discussion on quartz dissolution and its mechanisms of the Upper Paleozoictight gas reservoirs in the eastern Ordos Basin [J]. Natural Gas Geoscience, 2016, 27(11): 2005-2012.
[10] HU Wei-qiang,ZHAO Jing-zhou,LI Jun,LI Lei,ZHENG Jie,JING Xiang-hui. Characteristics of Source Rocks and Its Controls on the Formation and Distribution of Gas from Upper Paleozoic in Southwest Ordos Basin [J]. Natural Gas Geoscience, 2015, 26(6): 1068-1075.
[11] ZHU Yong-jin,YIN Tai-ju,SHEN An-jiang,LIU Ling-li,LIU Zhong-bao. Experiments on Shallow-Lacustrine Deltaic Sandstone in the Ordos Basin(Upper Paleozoic),Central China [J]. Natural Gas Geoscience, 2015, 26(5): 833-844.
[12] SHI Shu-yuan,HU Su-yun,LIU Wei,XU Zhao-hui,LI Bo-hua,WU Na. Distinguishing Paleokarst Period by Integrating Carbon-Oxygen Isotopes and Fluid Inclusion Characteristics [J]. Natural Gas Geoscience, 2015, 26(2): 208-217.
[13] CAO Qing,GAO Jun-mei,FAN Li-yong,PANG Chang-xu,YU Jin-zhu. Characteristics and Significance of Fluid Inclusionsin Upper Paleozoic of Southwest Ordos Basin [J]. Natural Gas Geoscience, 2015, 26(12): 2245-2253.
[14] SUN Liu-yi,ZHAO Jing-zhou,LI Jun,BAO Hong-ping,LIU Bao-xian,WANG Hong-wei,WANG Qian. Hydrocarbon Accumulation Patterns of the Upper Paleozoic Gas in the Longdong Area,Ordos Basin [J]. Natural Gas Geoscience, 2015, 26(11): 2029-2038.
[15] LIU Jian-liang,JIANG Zhen-xue,LIU Ke-yu,GUI Li-li,LI Feng,XING Jin-yan. Hydrocarbon Accumulation Process of the Yaha Tectonic Belt,Kuqa Foreland Basin [J]. Natural Gas Geoscience, 2015, 26(1): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[5] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[6] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[7] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[8] DU Le-tian. INTRODUCTION AND ANALYSIS OF FOREIGN NATURAL GAS GEOSCIENCE STUDIES BASED ON SO KOLOV'S DATA[J]. Natural Gas Geoscience, 2007, 18(1): 1 -18 .
[9] . THERMAL SIMULATION OF ORDOVICIAN SOURCE ROCK OF FORELANDBASIN IN  WESTERN ORDOS[J]. Natural Gas Geoscience, 2006, 17(2): 187 -191 .
[10] LIU Quan-you;Liu Wen-hui;Krooss B M;WANG Wan-chun;DAI Jin-xing. ADVANCES IN NITROGEN GEOCHEMISTRY OF NATURAL GAS[J]. Natural Gas Geoscience, 2006, 17(1): 119 -124 .