Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (12): 1749-1756.doi: 10.11764/j.issn.1672-1926.2020.07.005

Previous Articles     Next Articles

Progress on different reserve calculation methods in the whole life cycle of gas reservoir development

Yun-sheng WEI1(),Ai-lin JIA1,Yan-mei XU1,Jian-long FANG2   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.PetroChina Exploration and Production Company,Beijing 100007,China
  • Received:2020-04-09 Revised:2020-07-14 Online:2020-12-10 Published:2020-12-11
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05015);The Major Science and Technology Project of PetroChina(2016E-0611)

Abstract:

Reserve evaluation is very important in the full life cycle of gas reservoir. So it is of great significance to sort out different calculation methods of reserves systematically in the process of understanding and developing gas reservoirs. In the early evaluation stage, the proved reserves, which are the basis of conceptual design and development plan for gas field development, can be calculated by the volumetric method or reservoir?volume?method according to the reservoir type. During the implementation of the development plan, producing?reserves should be determined to guide well placement. With the large-scale development the dynamic reserves and recoverable reserves of wells or reservoirs are calculated by using the material balance and modern decline method to guide the optimization of technical policies such as well pattern, well spacing and production practices. In the middle and late stage of development, gas reservoir fine description and numerical simulation are used to determine the remaining reserves and guide the tapping potential. On the whole, the three factors, the spatial structure of the reservoir, the occurrence state of the fluid and the boundary of gas reservoir are important bases for optimizing the calculation method of different reserves, are also the key parameters for continuous understanding of gas reservoir in the whole development life cycle.

Key words: Proved?reserves, Producing?reserves, Dynamic?reserves, Recoverable?reserves, Remaining?reserves, Reserve evaluation

CLC Number: 

  • TE32

Fig.1

Classification of development reserves"

Table 1

Evaluation methods of proved reserve parameters with different early evaluation models of gas fields"

模式突出特点探明储量计算参数评价
含气面积有效储层厚度孔隙度含气饱和度岩石密度含气量
常规构造气藏评价模式储层结构和气水关系简单二维或三维地震、少量评价井岩心分析、测井解释、试气资料分析//
大型优质气田试采评价模式规模大,评价要求高三维地震、评价井、试采数据//
多断块气田滚动评价模式断块边界确定难度大高精度三维地震、关键位置一定 密度的评价井//
非常规气田多阶段评价模式分级分区评价三维地震、少量评价井称重法

保压取心

或折算法

Table 2

Methods on calculating proved reserves of different natural gas reservoir"

气藏类型地下赋存状态探明储量计算方法计算公式符号说明
常规气和致密气气态容积法G=0.01AhφSgi/BgiG为探明地质储量,108 m3A为含气面积,km2h为有效厚度,m;φ为有效孔隙度,小数;Sgi为原始含气饱和度,小数;Bgi为原始气体体积系数,小数;ρs为岩石密度,t/m3Ca为吸附气含气量,m3/t;α为沉积层孔隙中含天然气水合物体积比例,小数;B为天然气水合物分解甲烷的膨胀系数,小数
页岩气和煤层气游离态容积法Gf=0.01AhφSgi/Bgi
吸附态体积法Ga=0.01AhρsCa
天然气水合物固态类体积法G=0.01AhφαB

Table 3

Methods and applicable conditions for determining the critical value of reservoir properties"

序号方法原理适用气藏和条件
1孔隙度—渗透率交会法利用储层孔隙度—渗透率关系图确定孔隙度下限值。该方法精度不够,仅供参考所有气藏,岩心常规实验数据
2孔隙结构法利用压汞数据得到渗透率累积贡献值99.9%时的孔喉大小,再根据孔喉中值与常规物性参数的关系,截取物性下限值所有气藏,压汞数据
3最小含气喉道半径法根据驱动力和毛细管阻力平衡关系,可计算不同气藏高度气体进入岩石孔隙的最小喉道半径,计算最大驱替压力,再根据不同气藏高度下孔隙度与含水饱和度及驱替压力关系,确定孔隙度下限有水构造气藏,压汞数据、岩心常规实验数据
4泥浆侵入法根据不同层位岩心中氯化盐的含量判断储层物性。该方法精度不够,仅供参考水基泥浆钻井,氯化盐测试数据
5气—水相对渗透率法根据不同物性岩心气水相对渗透率曲线,确定含水饱和度上限和气相渗透率下限有水气藏,气水两相相渗实验
6试气法试气成果与孔隙度—电阻率交会图结合确定孔隙度下限所有气藏,试气资料多时适用
7水锁实验法根据水锁实验得到岩心束缚水饱和度,再根据孔隙度与含水饱和度关系,确定孔隙度下限所有气藏,水锁实验和常规实验
8核磁共振实验法利用核磁共振实验,建立束缚水饱和度与孔隙度的关系,根据束缚水饱和度值确定孔隙度下限所有气藏,核磁共振实验
9“J函数”评价法利用岩心压汞实验数据建立“J函数”,根据储层实际物性数据,得到储层毛管力,再根据不同气藏高度下孔隙度与含水饱和度及驱替压力的关系,确定孔隙度下限所有气藏,压汞数据、岩心常规实验数据
10邻区类比法类比邻区构造、储层等特征,确定物性下限所有气藏,同类型气藏对比

Table 4

Main methods and applicable conditions of calculating dynamic reserves"

方法

类型

方法名称气藏类型适用条件可靠程度适用范围
气井气藏

传统

方法

物质平衡法各类气藏

采出程度大于20%

至少2个静压测试点

较可靠
弹性二相法定容封闭气藏拟稳态,定产生产一般
不稳定试井法定容封闭气藏各开发阶段一般
数值模拟法各类气藏地质模型、生产动态较可靠

现代

方法

Fetkovich定容封闭气藏定压生产较可靠
Blasingame各类气藏变产量、变压力
AG各类气藏变产量、变压力
NPI各类气藏变产量、变压力
FMB各类气藏变产量、变压力
解析法各类气藏解析拟合求解
1 贾爱林, 闫海军, 郭建林, 等. 全球不同类型大型气藏的开发特征及经验[J]. 天然气工业, 2014, 34(10): 33-46.
JIA A L, YAN H J, GUO J L, et al. Characteristics and experiences of the development of various giant gas fields all over the world[J]. Natural Gas Industry, 2014, 34(10): 33-46.
2 张吉, 侯科锋, 李浮萍, 等. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
ZHANG J, HOU K F, LI F P, et al. Reserves evaluation of tight sandstone gas reservoir based on reservoir geological knowledge database:A case study of Su 14 block in Sulige Gas Field, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1322-1329.
3 叶庆全, 袁敏. 油气田开发常用名词解释[M]. 北京: 石油工业出版社, 2002.
YE Q Q,YUAN M. Interpretation of Terms in Oil and Gas Field Development[M].Beijing:Petroleum Industry Press, 2002.
4 李熙喆, 刘晓华,苏云河, 等. 中国大型气田井均动态储量与初始无阻流量定量关系的建立与应用[J]. 石油勘探与开发, 2018, 45(6): 1020-1025.
LI X Z, LIU X H, SU Y H, et al. Correlation between per-well average dynamic reserves and initial absolute open flow potential (AOFP) for large gas fields in China and its application[J]. Petroleum Exploration and Development, 2018, 45(6): 1020-1025.
5 贾爱林. 中国天然气开发技术进展及展望[J]. 天然气工业, 2018, 38(4): 77-86.
JIA A L. Progress and prospects of natural gas development technologies in China[J]. Natural Gas Industry, 2018, 38(4): 77-86.
6 陈元千. 油气藏工程实践[M]. 北京: 石油工业出版社, 2011.
CHEN Y Q. The Practice of Petroleum Reservoir Engineering[M]. Beijing: Petroleum Industry Press, 2011.
7 孙贺东, 王宏宇, 朱松柏, 等. 基于幂函数形式物质平衡方法的高压、超高压气藏储量评价[J]. 天然气工业, 2019, 39(3): 56-64.
SUN H D, WANG H Y, ZHU S B, et al. Reserve evaluation of high pressure and ultra high pressure reservoirs with power function material balance method[J]. Natural Gas Industry, 2019, 39(3): 56-64.
8 赵宽志, 张丽娟, 郑多明, 等. 塔里木盆地缝洞型碳酸盐岩油气藏储量计算方法[J]. 石油勘探与开发, 2015, 42(2): 251-256.
ZHAO K Z, ZHANG L J, ZHENG D M, et al. A reserve calculation method for fracture-cavity carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 251-256.
9 丁显峰, 刘志斌, 潘大志. 异常高压气藏地质储量和累积有效压缩系数计算新方法[J]. 石油学报, 2010, 31(4): 626-628.
DING X F, LIU Z B, PAN D Z. A new method for estimating gas in place and cumulative effective compressibility of abnormal high-pressure gas reservoirs[J]. Acta Petrolei Sinica, 2010, 31(4): 626-628.
10 郭平, 欧志鹏. 考虑水溶气的凝析气藏物质平衡方程[J]. 天然气工业, 2013, 33(1): 70-74.
GUO P, OU Z P. Material balance equation of a condensate gas reservoir considering water soluble gas[J]. Natural Gas Industry, 2013, 33(1): 70-74.
11 张烈辉, 陈果, 赵玉龙, 等. 改进的页岩气藏物质平衡方程及储量计算方法[J]. 天然气工业, 2013, 33(12): 66-70.
ZHANG L H, CHEN G, ZHAO Y L, et al. A modified material balance equation for shale gas reservoirs and a calculation method of shale gas reserves[J]. Natural Gas Industry, 2013, 33(12): 66-70.
12 李海涛,王科,张庆,等.基于修正容积法计算页岩气井改造区原始天然气地质储量[J].天然气工业,2017,37(11): 61-69.
LI H T, WANG K, ZHANG Q, et al. Calculation of OGIP in the stimulated zone of a shale gas well based on the modified volumetric method[J]. Natural Gas Industry, 2017, 37(11): 61-69.
13 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20.
ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016,36(11):12-20.
14 姜瑞忠, 乔欣, 何吉祥,等. 页岩气地质储量计算新方法[J]. 天然气地球科学, 2016, 27(4): 699-705.
JIANG R Z, QIAO X, HE J X, et al. A new method to calculate shale gas geological reserves[J]. Natural Gas Geoscience, 2016, 27(4): 699-705.
15 王星锦, 王伟. 煤层气储量计算方法[J]. 天然气工业, 1998, 18(4): 24-27.
WANG X J, WANG W. Estimation method of coalbed gas reserves[J]. Natural Gas Industry, 1998, 18(4): 24-27.
16 戴金星, 倪云燕, 黄士鹏, 等. 中国天然气水合物气的成因类型[J]. 石油勘探与开发, 2017, 44(6): 837-848.
DAI J X, NI Y Y, HUANG S P, et al. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Development, 2017, 44(6): 837-848.
17 ZHANG W, LIANG J Q, WEI J G, et al. Origin of natural gases and associated gas hydrates in the Shenhu area, northern South China Sea: Results from the China gas hydrate drilling expeditions [J]. Journal of Asian Earth Sciences, 2019: 183.
18 SMITH J E. How to Rate Crude Oil for Alkaline Flooding Potential: A Study Based on 239 Crude Oils[C]. SPE-25171-MS. SPE International Symposium on Oilfield Chemistry Held in the New Orleans, Louisiana, USA, 2-5 March 1993.
19 SCHUYLER J R. Probabilistic Reserves Lead to More Accurate Assessments[C].SPE-49032-MS. SPE Annual Technical Conference and Exhibition Held in the New Orleans, Louisiana, USA, 27-30 September, 1998.
20 PATRICELLI J A, MCMICHAEL C L. An integrated deterministic/Probabilistic approach to reserve estimations[J]. Journal of Petroleum Technology, 1995, 47(1):49-53.
21 HALL R K. Evaluating Resource Plays with Statistical Models[C].SPE-107435-MS. Hydrocarbon Economics and Evaluation Symposium Held in the Dallas, Texas, USA, 1-3 April, 2007.
22 DOBSON M L, LUPARDUS P D, DIVINE T, et al. A Practical Solution for Booking PUD Reserves in a Resource Play Using Probabilistic Methods[C].SPE-144383-MS. S PE North America Unconventional Gas Conference and Exhibition Held in the Woodlands, Texas, USA, 14-16 June 2011.
23 GALVAO M S, HASTENREITER L, MOLINA J A, et al. Probabilistic Reserves and Resources Estimation: A Methodology for Aggregating Probabilistic Petroleum Reserves and Resources[C].SPE-152923. SPE/EAGE European Unconventional Resource Conference and Exhibition Held in Vienna, Austria, 20-22 March 2012.
24 中华人民共和国石油天然气行业标准SY/T 6098-2010. 天然气可采储量计算方法[S]. 北京:国家能源局,2010.
The People’s Republic of China Standards of Petroleum and Natural Gas Industry SY/T 6098-2010. The estimated methods of natural gas recoverable reserves[S].Beijing:National Energy Administration, P.R.C, 2010.
25 郭智, 贾爱林, 冀光, 等. 致密砂岩气田储量分类及井网加密调整方法——以苏里格气田为例[J]. 石油学报, 2017, 38(11): 1299-1309.
GUO Z, JIA A L, JI G, et al. Reserve classification and well pattern infilling method of tight sandstone gas field: A case study of Sulige Gas Field[J]. Acta Petrolei Sinica, 2017, 38(11): 1299-1309.
26 贾爱林, 付宁海, 程立华, 等. 靖边气田低效储量评价与可动用性分析[J]. 石油学报, 2012, 33(S2): 160-165.
JI A L, FU N H, CHENG L H, et al. The evaluation and recoverability analysis of low-quality reserves in Jingbian Gas Field[J]. Acta Petrolei Sinica,2012, 33(S2): 160-165.
27 TAREK A. Reservoir Engineering Handbook[M]. Amsterdam: Elsevier, 2006.
28 李传亮. 油藏工程原理[M]. 北京: 石油工业出版社, 2005.
LI C L. Fundamentals of Reservoir Engineering[M]. Beijing: Petroleum Industry Press, 2005.
29 张立侠, 郭春秋, 蒋豪, 等. 物质平衡—拟压力近似条件法确定气藏储量[J]. 石油学报, 2019, 40(3): 337-349.
ZHANG L X, GUO C Q, JIANG H, et al. Gas in place determination by material-balance quasi pressure approximation condition method[J]. Acta Petrolei Sinica,2019, 40(3): 337-349.
30 王会强, 彭先, 李爽, 等. 裂缝系统气藏动态储量计算新方法——以四川盆地蜀南地区茅口组气藏为例[J]. 天然气工业, 2013, 33(3): 43-46.
WANG H Q, PENG X, LI S, et al. A new method of dynamic reserves calculation for gas reservoirs in fracture networks: A case study of the reservoir in Maokou group,Shunan block,Sichuan Basin[J]. Natural Gas Industry, 2013, 33(3): 43-46.
31 李新峰. 一种提高独立封闭有水气藏储量计算精度的新方法[J]. 天然气工业, 2004, 24(3): 94-97.
LI X F. New method to improve calculating accuracy of separate closed quifer gas reservoirs[J]. Natural Gas Industry, 2004, 24(3): 94-97.
32 黄全华, 方涛. 低渗透产水气藏单井控制储量的计算及产水对储量的影响[J]. 天然气工业,2013, 33(3): 33-36.
HUANG Q H, FANG T. Single well controlled reserves calculation for low permeability water-producing gas reservoirs and implications of the involvement of water production[J]. Natural Gas Industry, 2013, 33(3): 33-36.
33 唐圣来, 罗东红, 闫正和, 等. 中国南海东部强边底水驱气藏储量计算新方法[J]. 天然气工业, 2013, 33(6): 44-47.
TANG S L, LUO D H, YAN Z H, et al. A new method of calculating the reserves of gas reservoirs strongly driven by edge and bottom water in the eastern South China Sea[J]. Natural Gas Industry, 2013, 33(6): 44-47.
34 陈劲松, 韩洪宝, 年静波, 等. 概率法在页岩气未开发最终可采量评估中的应用——以北美某成熟页岩气区块为例[J]. 天然气工业, 2018, 38(7): 52-58.
CHEN J S, HAN H H, NIAN J B, et al. Application of the probability method to undeveloped EUR assessment of shale gas: A case study on one mature shale gas block in North America[J]. Natural Gas Industry, 2018, 38(7): 52-58.
35 曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用[J]. 天然气工业, 2018, 38(S1): 50-56.
CAO Y M, DING R, ZHAO Q Y, et al. Evaluation and application of CBM recoverable reserves calculation method[J]. Natural Gas Industry, 2018, 38(S1): 50-56.
36 陈元千, 唐玮. 油气田剩余可采储量、剩余可采储采比和剩余可采程度的年度评价方法[J]. 石油学报, 2016, 37(6): 796-801.
CHEN Y Q, TANG W. Annual evaluation methods for remaining recoverable reserves, remaining recoverable reserves-production ratio and remaining recoverable degree of oil and gas fields[J]. Acta Petrolei Sinica, 2016, 37(6): 796-801.
[1] Hong-wen Luo,Hai-tao Li,Bei-bei Jiang,Ying Li,Yu Lu. A novel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data [J]. Natural Gas Geoscience, 2019, 30(11): 1639-1645.
[2] Hai-jing Song,Yun-he Su,Xiao-lin Xiong,Yong Liu,Si-cun Zhong,Jian-jun Wang. EUR evaluation workflow and influence factors for shale gas well [J]. Natural Gas Geoscience, 2019, 30(10): 1531-1538.
[3] Jie Zhang,Xi-zhe Li,Shu-sheng Gao,Li-you Ye,Hua-xun Liu,Wen-qing Zhu,Fei-fei Fang. Water production mechanism of tight sandstone gas reservoir and its influence on percolation capacity [J]. Natural Gas Geoscience, 2019, 30(10): 1519-1530.
[4] Xuan Xu,Yu-jing Wan,Ying-li Chen,Yong Hu,Qing-yan Mei,Chun-yan Jiao. Physical simulation of water invasion and water control for the fractured water-bearing gas reservoirs [J]. Natural Gas Geoscience, 2019, 30(10): 1508-1518.
[5] Ze-yang Peng,Xiang-fang Li,Zheng Sun. Desorption model considering gas⁃water distribution for coalbed methane reservoir [J]. Natural Gas Geoscience, 2019, 30(10): 1415-1421.
[6] Zeng Fan-hui, Tang Bo-tao, Wang Tao, Guo Jian-chun, Xiao Yong-jun, Zhang Shou-ren. Prediction model of fracture initiation pressure of open hole well considering penetration effect [J]. Natural Gas Geoscience, 2019, 30(4): 549-556.
[7] Jiang Rui-zhong, Zhang Fu-lei, Gao Yi-hua, Cui Yong-zheng, Shen Ze-yang, Yuan Jian-wei. Unsteady productivity model of elliptical flow in fracturing triple medium gas reservoir [J]. Natural Gas Geoscience, 2019, 30(3): 370-378.
[8] Chen Jian-xun, Yang Sheng-lai, Zou Cheng, Mei Qing-yan, Zhou Yuan, Sun Li-ting. Flow characteristics and influencing factors of low permeability-hydrous gas reservoirs in Xujiahe Formation,central Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(3): 400-406.
[9] Song Wen-li, Dong Jia-xin, Sun Yuan-hui, Huang Yu-xin, Wang Jun-yu. Water-yielding pattern and influencing factors of gas wells of Changling volcanic gas reservoir,Songliao Basin [J]. Natural Gas Geoscience, 2018, 29(12): 1788-1794.
[10] Yin Sen-lin, Cheng Le-li, Liu Zi-xiong, Chen Ling, Chen Gong-yang, Feng Wei, Luo Ying-chun. Evaluation of production capacity to tight sandstone reservoir based on logging and mud logging curve [J]. Natural Gas Geoscience, 2018, 29(11): 1627-1638.
[11] Wang Nu-tao,Chen Zhong-liang,Zhu Ming-qian,Wang Yu-gen,Zhang Yan. Dynamic reserve calculation of single well in condensate gas reservoirs based on a principle of mass conservation [J]. Natural Gas Geoscience, 2018, 29(3): 424-428.
[12] Yang Hao-long,Xiang Zu-ping,Yuan Ying-zhong,Li Long. A new productivity calculation method of fractured gas well in low permeability gas reservoir [J]. Natural Gas Geoscience, 2018, 29(1): 151-157.
[13] Hao Yong-mao,Wei Xin-lin,Dong Cheng-shun. Research on the microscopic distribution characteristics and storage capacity of CO2 with different displacement methods [J]. Natural Gas Geoscience, 2017, 28(6): 846-851.
[14] Zhao Jun,Fan Jia-bao,Dai Xin-yun,He Sheng-lin,Zhang Hai-rong. A classification method for permeability model in complex anisotropy reservoirs [J]. Natural Gas Geoscience, 2017, 28(2): 183-188.
[15] Luo Chao,Jia Ailin,He Dongbo,Guo Jianlin,Zhang Gong,Cheng Zhongjiang. Comparison study on the distribution of gas and water in Xu4 and Xu6 Formations tight gas sandstone reservoir of Guang’an Gasfield,Sichuan Basin [J]. Natural Gas Geoscience, 2016, 27(2): 359-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!