Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (10): 1375-1388.doi: 10.11764/j.issn.1672-1926.2020.06.007

Previous Articles     Next Articles

Sedimentary facies and reservoir evolution divergence of Early Cretaceous sandstones in Southwest Depression of Tarim Basin

Qing-lu ZENG1,2(),Rong-hu ZHANG1,2,Liang ZHANG3,Chun LIU1,2,Cai CHEN3,Jiu-feng XIA1,2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
    3.Exploration and Development Research Institute,PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2020-05-19 Revised:2020-06-16 Online:2020-10-10 Published:2020-09-30
  • Supported by:
    The National Key Research and Development Program (Grant No.2019YFC0605501);The Major Science and Technology Project of CNPC (Grant No.2019B-0304).

Abstract:

The Lower Cretaceous is one of the main exploration strata in Southwest Depression of Tarim Basin. It is rich in oil and gas resources but has a low degree of exploration. A number of the newly deployed exploratory wells suffered losses. In order to guide the next step of exploration and deployment, using the data of outcrop, drilling, seismic and experimental analysis, the residual distribution, sedimentary system types and reservoir evolution difference of the Lower Cretaceous were studied. The results show as follows. Firstly, unlike the previous understanding of continuous belt-shaped distribution, there are four concentrated distribution areas of the Lower Cretaceous along the front of southern Tianshan Mountains and western Kunlun Mountains, which are Kashi Northern Margin, Wupper Structural Belt, Qibei Structural Belt and Kedong Structural Belt. The Lower Cretaceous is thinned and extinct from the mountain front to the interior of the basin. Secondly, under the control of ancient geomorphology, two sedimentary system types of braided delta and fan delta were developed. Among them, braided delta is dominated by delta front subfacies, and thick channel sand bodies are superimposed and contiguously distributed, while fan delta is composed of delta plain and delta front subfacies with the characteristics of thick and short-axis distribution and coarse grains. Thirdly, affected by original sedimentary components and late diagenetic transformation, the Lower Cretaceous developed two reservoir types of secondary pore type and primary pore type, and the reservoir physical properties are shown as the differential distribution of medium-low porosity and medium-low permeability to extra-low porosity and extra-low permeability. The favorable reservoirs are relatively distributed in Kashi Northern Margin and Kedong Structural Belts.

Key words: Stratigraphic distribution, Sedimentary system, Reservoir divergence, Lower Cretaceous Southwest Depression, Tarim Basin

CLC Number: 

  • TE121

Fig.1

Location, structural unit and stratigraphic histogram of Southwest Depression in Tarim Basin"

Fig.2

Contour map of residual thickness of Lower Cretaceous in Southwest Depression of Tarim Basin"

Table 1

The zone distribution of Lower Cretaceous in Southwest Depression of Tarim Basin"

地层分区残余面积/km2主体厚度/m延伸距离/km平面展布特征岩性
喀什北缘3 300200~80030~50东西向厚度稳定,由北向南逐渐减薄褐红色厚层砂岩夹薄—厚层泥岩
乌泊尔构造带1 800400~1 20020~40存在2个厚度中心,向东北方向减薄尖灭褐色厚—巨厚层砂砾岩
棋北构造带3 100200~1 0000~60北部形成厚度集中的残余地层前锋带,边界断层以北无残余褐红色厚层砂岩和中厚层泥岩
柯东构造带4 500200~600>60东西向厚度稳定,由南由北逐渐减薄褐红色厚层砂岩和泥岩

Fig.3

The typical interpretation sections of the piedmont trust belt in Southwest Depression of Tarim Basin (see Fig.2 for section locations)"

Table 2

Identification basis of dominant microfacies sand bodies of Lower Cretaceous in Southwest Depression of Tarim Basin"

沉积体系微相砂体岩性典型沉积构造粒度特征纵向结构
辫状河三角洲前缘水下分流河道中砂岩、细砂岩交错层理、冲刷面正韵律,分选差到中等多期砂体相互叠置
前缘河口坝细砂岩、粉砂岩交错层理、平行层理反韵律,分选中等厚度小,常单独发育
扇三角洲平原水下分流河道砾岩、含砾砂岩砂质透镜体,大型交错层理正韵律,分选差逆旋回,多期砂体相互叠置
前缘水下分流河道中砂岩、含砾砂岩交错层理、变形层理、粒序层理正韵律,分选差单层厚度大,多期砂体相互叠置

Fig.4

Typical characteristics of brained delta and fan delta sedimentary systems"

Fig.5

Plane distribution of the sedimentary systems of Lower Cretaceous in Southwest Depression of Tarim Basin"

Fig.6

Triangle diagram of the sandstone composition of Lower Cretaceous Kezilesu Group in Southwest Depression of Tarim Basin"

Table 3

The petrology characteristics of Lower Cretaceous Kezilesu Group in Southwest Depression of Tarim Basin"

构造单元样品数量成分含量/%粒度分选磨圆

接触

类型

石英长石岩屑杂基胶结物
喀什北缘281

(45.0~74.0)

/61.2

(5.0~30.0)

/13.2

(12.0~39.0)

/25.6

(1.0~12.0)

/5.5

(0~17.0)

/5.2

中粒、细粒中等—好次棱角状—次圆点—线
柯东构造带96

(48.0~72.0)

/55.9

(10.0~27.0)

/20.5

(12.0~33.0)

/23.6

(0~12.0)

/7.6

(0~16.0)

/3.5

细粒、中细粒中等—好次棱角状—次圆点—线、线
棋北构造带54

(38.0~72.0)

/57.1

(5.0~28.0)

/16.8

(13.0~46.0)

/26.1

(0~11.0)

/6.8

(0~15.0)

/4.3

中粒、细粒中等—好次棱角状—次圆点—线、线
乌泊尔构造带101

(10.0~70.0)

/44.6

(8.0~35.0)

/17.2

(11.0~78.0)

/38.2

(3.0~16.0)

/9.7

(0~26.0)

/7.8

不等粒、中粒差—中等次棱角状—次圆点—线

Fig.7

Reservoir porosity and permeability distribution and pore types of Lower Cretaceous in Southwest Depression of Tarim Basin"

Fig.8

Micro-characteristics of reservoir space"

Fig.9

Comparison chart of reservoir porosity evolution difference"

Fig.10

Prediction of reservoir thickness of Lower Cretaceous in Southwest Depression of Tarim Basin"

1 伍致中,刘东海.塔里木盆地西南坳陷的形成演化[J].新疆石油地质,1996,17(3):211-218.
WU Z Z, LIU D H. Formation and evolution of southwest depression in Tarim Basin[J]. Xinjiang Petroleum Geology, 1996,17(3):211-218.
2 金之钧,吕修祥.塔西南前陆盆地油气资源与勘探对策[J].石油与天然气地质,2000,21(2):110-117.
JIN Z J, LV X X. Hydrocarbon resources and exploration strategy of foreland basins in southwest Tarim Basin[J]. Oil & Gas Geology, 2000,21(2):110-117.
3 张玮,漆家福,李勇.塔里木盆地西南缘构造样式及其主导因素[J].地质科学,2011,46(3):723-732.
ZHANG W, QI J F, LI Y. Structure styles in south-western margin of Tarim Basin and their dominate factors[J]. Chinese Journal of Geology, 2011,46(3):723-732.
4 邢厚松,李君,孙海云,等.塔里木盆地塔西南与库车山前带油气成藏差异性研究及勘探建议[J].天然气地球科学,2012, 23(1):36-45.
XING H S, LI J, SUN H Y, et al. Differences of hydrocarbon reservoir forming between southwestern Tarim Basin and Kuche mountain front[J]. Natural Gas Geoscience, 2012,23(1):36-45.
5 马华东,杨子江.塔里木盆地西南新生代盆地演化特征[J].新疆地质,2003,21(1):92-95.
MA H D. YANG Z J. Evolution of the Cenozoic in southwestern Tarim Basin[J].Xinjiang Geology, 2003,21(1):92-95.
6 孙龙德.塔里木盆地库车坳陷与塔西南坳陷早白垩世沉积相与油气勘探[J].古地理学报,2004,6(2):252-260.
SUN L D. Sedimentary facies and exploration of petroleum of the Early Cretaceous in Kuqa Depression and southwest depression in Tarim Basin[J].Journal of Palaeogeography, 2004,6(2):252-260.
7 张惠良,沈扬,张荣虎,等.塔里木盆地西南部昆仑山前下白垩统沉积相特征及石油地质意义[J].古地理学报, 2005,7(2):157-168.
ZHANG H L, SHEN Y, ZHANG R H, et al. Characteristics of sedimentary facies and petroleum geological significance of the Lower Cretaceous in front of Kunlun Mountains in southwestern Tarim Basin[J]. Journal of Palaeogeography, 2005,7(2):157-168.
8 郭群英,李越,张亮,等.塔里木盆地西南地区白垩系沉积相特征[J].古地理学报, 2014,16(2):169-178.
GUO Q Y, LI Y, ZHANG L, et al. Sedimentary facies characteristics of the Cretaceous in southwestern Tarim Basin[J]. Journal of Palaeogeography, 2014,16(2):169-178.
9 张英志,林畅松,高志勇,等.塔西南坳陷早白垩世物源体系和沉积古地理分析[J].现代地质,2014,28(4):791-798.
ZHANG Y Z, LIN C S, GAO Z Y, et al. Deposition paleogeography and provenance analysis of Early Cretaceous southwest depression of Tarim Basin[J]. Geoscience, 2014,28(4):791-798.
10 任宇泽,林畅松,高志勇,等.塔里木盆地西南坳陷白垩系层序地层与沉积演化[J].天然气地球科学,2017,28(9):1298-1311.
REN Y Z, LIN C S, GAO Z Y, et al. Sequence stratigraphy and sedimentary filling evolution of the Cretaceous in southwest depression, Tarim Basin[J]. Natural Gas Geoscience, 2017,28(9):1298-1311.
11 石石,常志强,徐艳梅,等.塔西南阿克莫木气田白垩系克孜勒苏群砂岩储层特征及其控制因素[J].石油与天然气地质, 2012,33(4):506-510.
SHI S, CHANG Z Q, XU Y M, et al. Characteristics and their controlling factors of Cretaceous Kezilesu Group sandstone reservoirs in Akmomu Gas Field, northwestern Tarim Basin[J]. Oil & Gas Geology, 2012,33(4): 506-510.
12 何登发,李德生,何金有,等.塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J].石油学报,2013,34(2):201-218.
HE D F, LI D S,HE J Y, et al. Comparison in petroleum geology between Kuqa depression and southwest depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2013,34(2):201-218.
13 廖林,程晓敢,王步清,等.塔里木盆地西南缘中生代沉积古环境恢复[J].地质学报,2010,84(8):1195-1207.
LIAO L, CHENG X G, WANG B Q, et al. Reconstruction of Mesozoic sedimentary paleoenvironment in the southwestern Tarim Basin, northwestern China[J]. Acta Geologica Sinica, 2010,84(8):1195-1207.
14 曲国胜, 陈杰, 陈新安, 等. 西昆仑—帕米尔造山带及其北缘前陆盆地板内变形构造[J]. 地质论评, 1998,44(4):419-429.
QU G S, CHEN J, CHEN X A, et al. Intraplate deformation in the front of the West Kunlun-Pamir arcuate orogenic belt and the southwest Tarim Foreland Basin[J]. Geological Review, 1998,44(4):419-429.
15 秦都.塔里木盆地西南地区侏罗纪原型盆地类型及特征[J].石油与天然气地质,2005,26(6):831-839.
QIN D. Types and characteristics of Jurassic prototype basins in southwestern Tarim basin[J]. Oil & Gas Geology, 2005,26(6):831-839.
16 崔军文,郭宪璞,丁孝忠,等.西昆仑—塔里木盆地盆—山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006,13(4):103-118.
CUI J W, GUO X P, DING X Z, et al. Mesozoic-Cenozoic deformation structures and their dynamics in the basin range junction belt of the west Kunlun-Tarim Basin[J].Earth Science Frontiers, 2006,13(4):103-118.
17 方爱民,马建英,王世刚,等.西昆仑—塔西南坳陷晚古生代以来的沉积构造演化[J].岩石学报,2009,25(12):3396-3406.
FANG A M, MA J Y, WANG S G, et al. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since Late Paleozoic[J]. Acta Petrologica Sinica, 2009,25(12):3396-3406.
18 薛良清, GALLOWAY W E. 扇三角洲、辫状河三角洲与三角洲体系的分类[J].地质学报,1991,(2):141-153.
XUE L Q, GALLOWAY W E. Fan-delta, braid delta and the classification of delta systems[J]. Acta Geologica Sinica, 1991,(2):141-153.
19 厚刚福,孙雄伟,李昌,等.塔里木盆地西南部叶城凹陷下白垩统克孜勒苏群扇三角洲沉积特征及模式[J].中国地质, 2012,39(4):947-953.
HOU G F, SUN X W, LI C, et al. Depositional features of the fan delta from Lower Cretaceous Kezilesu Group in Yecheng sag,southwestern Tarim Basin[J].Geology in China,2012, 39(4):947-953.
20 操应长,金杰华,王艳忠,等.东营凹陷北带古近系沙四段砂砾岩体沉积特征及沉积模式[J].沉积与特提斯地质, 2014,34(4):13-23.
CAO Y C, JIN J H, WANG Y Z, et al. Sedimentary characteristics and model for the sandstones and conglomerates in the 4th member of the Palaeogene Shahejie Formation, north Dongying depression,Shandong[J]. Sedimentary Geology and Tethyan Geology, 2014,34(4):13-23.
21 寿建峰,朱国华,张惠良.构造侧向挤压与砂岩成岩压实作用——以塔里木盆地为例[J].沉积学报,2003,21(1):90-95.
SHOU J F, ZHU G H, ZHANG H L. Lateral structure compression and its influence on sandstone diagenesis: A case study from Tarim Basin[J].Acta Sedimentologica Sinica,2003,21(1):90-95.
22 曾庆鲁,莫涛,赵继龙,等.7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义——以库车坳陷下白垩统巴什基奇克组为例[J].天然气工业, 2020,40(1):38-47.
ZENG Q L, MO T, ZHAO J L, et al. Characteristics, genetic mechanism and oil&gas exploration significance of high-quality sandstone reservoirs deeper than 7000 m: A case study of the Bashenjiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1):38-47.
23 韩文学,陶士振,胡国艺,等.塔西南坳陷山前带天然气地球化学特征和成因[J].中国矿业大学学报,2017,46(1):121-130.
HAN W X, TAO S Z, HU G Y, et al. Geochemical characteristics of natural gas and its genesis in piedmont zone of southwest Tarim Basin[J]. Journal of China University of Mining & Technology, 2017,46(1):121-130.
24 曾庆鲁,张荣虎,王力宝,等.库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J].沉积学报,2018,36(5):946-956.
ZENG Q L, ZHANG R H, WANG L B, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoirs in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018,36(5):946-956.
25 崔明明,李进步,王宗秀,等.辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素——以苏里格气田西南部石盒子组8段为例[J].石油学报, 2019, 40(3):279-294.
CUI M M, LI J B, WANG Z X, et al. Characteristics of tight sand reservoir and controlling factors of high-quality reservoir at braided delta front: A case study from Member 8 of Shihezi Formation in southwestern Sulige Gas Field[J]. Acta Petrolei Sinica, 2019,40(3):279-294.
26 BEARD D C, WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973,57(2):349-369.
27 吴小斌,侯加根,孙卫.特低渗砂岩储层微观结构及孔隙演化定量分析[J].中南大学学报:自然科学版,2011,42(11):3438-3446.
WU X B, HOU J G, SUN W. Microstructure characteristics and quantitative analysis on porosity evolution of ultra-low sandstone reservoir[J]. Journal of Central South University:Science and Technology, 2011,42(11):3438-3446.
28 谭先锋,黄建红,李洁,等.深部埋藏条件下砂岩中碳酸盐胶结物的成因与储层改造——以济阳坳陷始新统孔店组为例[J].地质论评, 2015,61(5):1107-1120.
TAN X F, HUANG J H, LI J, et al. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep buried condition: A case study on Eocene Kongdian Formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 2015,61(5):1107-1120.
[1] Ying-hui CAO, Hong-hui LI, Shan WANG, Jing-shun QI, Jin-you HE, Hong-jiang WANG. An inquiry into the sedimentary model of Upper Sinian in Tadong Uplift of Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1099-1110.
[2] Hui-li LI, Dong-hua YOU, Jun HAN, Yi-xiong QIAN, Xu-guang SHA, Bin-bin XI. The fluid origin of calcite veins in Shunnan-Gucheng area of Tarim Basin and its implications for hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(8): 1111-1125.
[3] Zi-cheng CAO, Dong-hua YOU, Li-xin QI, Lu YUN, Wen-xuan HU, Zong-jie LI, Yi-xiong QIAN, Yong-li LIU. New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis [J]. Natural Gas Geoscience, 2020, 31(7): 915-922.
[4] Guang-you ZHU, Chong-hao SUN, Bin ZHAO, Ting-ting LI, Zhi-yong CHEN, Hai-jun YANG, Lian-hua GAO, Jin-hua HUANG. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7 000 m [J]. Natural Gas Geoscience, 2020, 31(5): 587-601.
[5] Ze-yu WANG, Zhan-feng QIAO, Fang-yi SHOU, Shao-xing MENG, Xue-ju LÜ. Origin and formation mechanism of dolomite in Penglaiba Formation of Yonganba outcrop, Tarim Basin: Evidence from ordering degree and unit cell parameters [J]. Natural Gas Geoscience, 2020, 31(5): 602-611.
[6] Zhao-hui XU, Lu WANG, Ying-hui CAO, Hong-hui LI, Lei YAN, Shan WANG, Yi-min ZHAO, Min YANG. Quantitative prediction of siliceous content and its controlling factor in the third member of Yingshan Formation in Gucheng area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 612-622.
[7] Min ZHANG, Zheng-hong ZHANG, Yi-xue XIONG, Yong-quan CHEN, Xiao-xue WANG, Hao HE, Qian KANG, Yuan MA, Dong-po SU. Formation mechanism and distribution of carbonate reservoirs in the 3rd-4th members of Ordovician Yingshan Formation on the northern slope of Tazhong Uplift [J]. Natural Gas Geoscience, 2020, 31(5): 636-646.
[8] De-bo MA, Wen-juan CUI, Xiao-wan TAO, Hong-kui DONG, Zhao-hui XU, Ting-ting LI, Xiu-yan CHEN. Structural characteristics and evolution process of faults in the Lunnan low uplift, Tabei Uplift in the Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 647-657.
[9] Jin DU, De-bo MA, Wei LIU, Ying-hui CAO, Yi-min ZHAO, Jing-shun QI, Min YANG. Structural characteristics and formation mechanism of faults in Xiaotangnan area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 658-666.
[10] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[11] Ran XIONG, Jian-feng ZHENG, Li-li HUANG, Yong-quan CHEN, Xin-feng NI. Mound-shoal complexes geological and seismic forward modeling of the Cambrian Xiaoerbulake Formation in the Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 735-744.
[12] Lin-xian CHI, Zhi-yao ZHANG, Guang-you ZHU, Hai-ping HUANG, Jian-fa HAN, Jing-fei LI. The molecular geochemical evidence of two accumulation stages of the Silurian reservoirs in Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 471-482.
[13] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
[14] Shan WANG, Ying-hui CAO, Ya-jin ZHANG, De-dao DU, Jing-shun QI, Ying BAI, Lei YAN, Min YANG, Jun-long ZHANG. Characteristics and main controlling factors of Upper Cambrian carbonate reservoir in Gucheng area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(10): 1389-1403.
[15] Xiao-xue WANG, Yi-xue XIONG, Yong-quan CHEN, Xin LIU, Jin-hua HUANG, Fang-jie HU, Lu FANG, Xin-xin WANG, Hai-ning LUO. Characteristics and controlling factors of the Upper Cambrian dolomite reservoir in buried hill aera on the East of Tazhong [J]. Natural Gas Geoscience, 2020, 31(10): 1404-1414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Jun-zhang,SHI He-sheng,SHU Yu,DU Jia-yuan,LUO Jun-lian. HEATING AND PRESSING SIMULATION EXPERIMENTS OF TYPICAL SOURCE ROCKS OF ZHU 1 DEPRESSION--DISCUSSION OF MODES OF HYDROCARBON GENERATION AND EXPELLATION AND TOC RECOVERY COEFFICIENTS[J]. Natural Gas Geoscience, 2006, 17(4): 573 -578 .
[2] Yang Zhan-long,Chen Qi-lin. LITHOLOGIC TRAPS AND LITHOLOGIC RESERVOIRS EXPLORATION  IN CONTINENTAL BASINS[J]. Natural Gas Geoscience, 2006, 17(5): 616 -621 .
[3] . [J]. Natural Gas Geoscience, 1997, 8(3): 9 -17 .
[4] HONG Feng;SONG Yan;LIU Shao-bo;ZHAO Meng-jun;QIN Sheng-fei;FU guo-you. A STUDY ON THE SOURCE- RESERVOIR-SEAL ASSOCIATIONS AND MATCHING OF HYDROCARBON ACCUMULATION FACTORS IN THE FORELAND BASINS IN CENTRAL-WESTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 27 -31 .
[5] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[6] WANG Lian-sheng;LIU Li;GUO Zhan-qian;MA Zhi-hong;CHI Dong\|hui. THE DISCUSSION OF THE ORIGIN OF SULFURETED HYDROGEN IN ASSOCIATED GAS OF DAQING PLACANTICLINE[J]. Natural Gas Geoscience, 2006, 17(1): 51 -54 .
[7] LIU Quan-you;LIU Wen-hui;MENG Qian-xiang. GEOCHEMICAL CHARACTERISTICS OF STERANES IN SATURATEDHYDROCARBONS FROM COAL AND EXINITE IN PYROLYSISUNDER CLOSED SYSTEMS[J]. Natural Gas Geoscience, 2007, 18(2): 249 -253 .
[8] . DEPOSITIONAL ORGANIC FACIES DIVISION OF COAL BEARING SOURCE ROCKS IN DAGANG FIELDS[J]. Natural Gas Geoscience, 2003, 14(4): 260 -263 .
[9] . SHALE GOUGE RATIO AND ITS APPLICATION IN THE FAULT SEAL ESTIMATION ACROSS THE FAULTED ZONE[J]. Natural Gas Geoscience, 2005, 16(3): 347 -351 .
[10] .
THE APPLICATION OF MICRO EARTHQUAKE MONITORING THEGAS INJECTION ADVANCING EDGE IN THE YAHA CONDENSATE GAS RESERVOIR
[J]. Natural Gas Geoscience, 2005, 16(3): 390 -393 .