Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (10): 1428-1436.doi: 10.11764/j.issn.1672-1926.2020.06.006

Previous Articles     Next Articles

New evidence of water stratification in the paleolakes of the first and third members of Shahejie Formation in Bozhong Depression, Bohai Bay Basin

Wei LIU1(),Zhen-qi WANG1(),Lin YE1,Li-fang LIU2,Sheng-bing HUANG2   

  1. 1.School of Geosciences,Yangtze University,Wuhan 430100,China
    2.China National Offshore Oil Corporation Research Institute,Beijing 100029,China
  • Received:2020-04-03 Revised:2020-06-05 Online:2020-10-10 Published:2020-07-02
  • Contact: Zhen-qi WANG E-mail:heyheyrose@163.com;Wangzhenqichangda@163.com
  • Supported by:
    The Cooperative Project of Research Institute of CNOOC (Grant No. CCL2017RCPS0099ECN).

Abstract:

Previous studies on the preservation conditions of lacustrine source rocks in Bozhong Depression of Bohai Bay Basin, especially on the stratification of water column, mainly proposed the evidence of biomarkers, lacking the evidence of inorganic geochemistry. Based on the enrichment principle of U and V elements in the sedimentary water and the formation mechanism of strawberry pyrite, this study attempts to explore the evidence of the stratification of water column in the first and third members of Shahejie Formation (Es1 and Es3) in Bozhong Depression. The results show that the V/(V+Ni) of Es1 and Es3 are between 0.20-0.93 and 0.62-0.78, respectively, indicating that the ancient lake water column is anoxic. The U/Th of Es1 and Es3 is between 0.14-0.43, but the content of U and TOC are positively correlated, indicating that the U is enriched in anoxic water column. At the same time, the content of V and TOC in Es1 and Es3 are also positively correlated, which further shows that during the sedimentary period of Es1 and Es3, the water column at the edge of the ancient lakes are all in anoxic environment, but not euxinic environment. According to the statistics of the average grain size of framboid pyrite in Es1 and Es3, the average grain size of framboid pyrite is only slightly larger than the upper limit of 5.0 μm in the environment of euxinic. This indicates that there is an oxidation-reduction interface during the sedimentary period of Es1 and Es3 in the shallow water of the edge of the ancient lake, which is located a few centimeters below the bottom of the lake. Therefore, it can be inferred that towards the sedimentation center of the ancient lake, the water column will gradually deepen, and the redox interface in the water body will inevitably rise to the middle of the water column, which is the stratification interface during the sedimentary periods of Es1 and Es3.

Key words: Stratification interface, Trace element, Framboid pyrite, Bozhong Depression

CLC Number: 

  • TE121.1

Fig.1

Regional location map of Bozhong Depression[4]"

Fig.2

Stratigraphic section for the Bozhong Depression[4]"

Table 1

Total organic carbon and trace element data of source rocks in the study area"

序号井号深度/m层位岩性U/10-6Th/10-6U/ThV/10-6Ni/10-6V/(V+Ni)TOC/%
1C-102 642.50沙一段泥岩3.6515.150.24101.8130.760.774.44
2C-102 655.00沙一段泥岩5.8313.650.43187.4839.070.837.31
3C-13 505.00沙一段泥岩2.1710.730.2089.4943.620.711.35
4C-13 533.50沙一段泥岩2.1511.850.1831.8339.860.201.58
5C-23 620.00沙一段泥岩1.418.710.1682.5134.550.621.87
6C-23 627.50沙一段泥岩1.4810.160.1592.3236.900.692.17
7C-34 797.50沙一段泥岩2.207.780.2872.05128.520.682.57
8C-34 822.50沙一段泥岩3.0312.950.2376.7450.260.683.18
9C-34 855.00沙一段泥岩2.7314.800.1890.6941.490.681.71
10C-53 620.00沙一段泥岩2.6113.670.1993.9645.480.701.13
11C-63 015.00沙一段泥岩2.1112.820.1686.4437.220.660.99
12C-73 362.50沙一段泥岩2.0010.870.1886.3331.920.731.63
13C-73 372.50沙一段泥岩1.8410.920.1783.2833.490.711.82
14C-82 230.00沙一段泥岩3.1512.130.2675.4334.070.691.70
15C-82 247.50沙一段泥岩3.9310.150.39119.2530.830.794.82
16C-92 412.50沙一段泥岩2.5311.990.2181.2134.150.700.63
17C-92 442.50沙一段泥岩2.1511.080.1969.2229.080.700.48
18C-92 505.00沙一段泥岩2.0810.850.1963.1127.780.690.59
19C-92 525.00沙一段泥岩2.8513.430.2163.7733.480.661.17
20C-13 653.50沙三中亚段泥岩2.398.560.2887.3143.270.670.97
21C-13 739.00沙三中亚段泥岩2.629.170.2980.9949.310.621.09
22C-13 787.00沙三中亚段泥岩1.7710.360.1783.2841.520.672.19
23C-14 070.50沙三中亚段泥岩1.7211.600.1583.0636.580.691.49
24C-23 777.50沙三中亚段泥岩1.539.920.1568.1332.580.686.11
25C-53 792.50沙三中亚段泥岩2.6614.260.1984.1542.020.672.08
26C-53 802.50沙三中亚段泥岩2.8814.980.1990.8047.370.661.85
27C-53 820.00沙三中亚段泥岩2.0511.260.1899.5242.100.701.95
28C-53 855.00沙三中亚段泥岩3.9818.040.2286.9843.640.673.44
29C-53 867.50沙三中亚段泥岩2.329.980.2386.4444.760.663.64
30C-53 910.00沙三中亚段泥岩2.348.990.2687.9643.250.672.73
31C-53 927.50沙三中亚段泥岩2.449.640.2587.8544.550.662.78
32C-63 365.00沙三中亚段泥岩3.6118.340.20117.6151.590.705.11
33C-82 287.50沙三中亚段泥岩3.8613.520.2985.2429.490.743.14
34C-82 302.50沙三中亚段泥岩2.8011.610.2478.2627.010.742.00
35C-92 682.50沙三中亚段泥岩2.7112.390.2271.8330.890.701.40
36C-92 707.50沙三中亚段泥岩3.4312.320.2877.3927.960.732.53
37C-92 742.50沙三中亚段泥岩3.6713.870.2696.5728.610.774.51
38C-92 777.50沙三中亚段泥岩3.5114.380.2488.2929.660.752.12
39C-92 795.00沙三中亚段泥岩3.4414.400.2482.6230.480.732.19
40C-92 820.00沙三中亚段泥岩3.7513.980.2792.3231.740.742.82
41C-92 867.50沙三中亚段泥岩3.3313.270.2579.6830.150.732.24
42C-92 917.50沙三中亚段泥岩3.8114.400.2688.8432.750.733.84
43C-102 895.00沙三中亚段泥岩2.8313.930.20101.7028.360.782.10
44C-102 942.50沙三中亚段泥岩2.6312.700.2187.7526.340.771.24
45C-102 995.00沙三中亚段泥岩2.9614.130.2199.6330.690.762.10
46C-103 030.00沙三中亚段泥岩3.6016.100.22112.0535.430.762.56
47C-103 092.50沙三中亚段泥岩2.7314.130.19101.2630.570.772.36
48C-23 837.50沙三下亚段泥岩1.8711.470.1688.2939.970.691.15
49C-73 425.00沙三下亚段泥岩3.1816.120.20109.9852.400.683.77
50C-73 452.50沙三下亚段泥岩3.3716.120.21131.8950.810.724.15
51C-73 477.50沙三下亚段泥岩3.9017.610.22118.7051.570.704.86
52C-73 487.50沙三下亚段泥岩4.0418.120.22127.3149.000.725.55
53C-73 512.50沙三下亚段泥岩4.2619.610.22118.1650.280.705.44
54C-73 547.50沙三下亚段泥岩2.9317.040.17118.7047.570.713.80
55C-73 572.50沙三下亚段泥岩2.9917.770.17122.6361.410.677.39
56C-73 600.00沙三下亚段泥岩4.5819.980.23115.7648.500.705.90
57C-73 622.50沙三下亚段泥岩3.9820.420.19123.9351.810.714.82
58C-73 645.00沙三下亚段泥岩2.4216.190.15108.3547.690.691.11
59C-73 660.00沙三下亚段泥岩2.1515.550.14101.2646.350.691.18
60C-73 702.50沙三下亚段泥岩2.4816.260.15112.0545.150.711.30
61C-73 720.00沙三下亚段泥岩2.1915.130.14114.7846.730.711.01
62C-82 387.50沙三下亚段泥岩2.8113.430.2186.4428.380.751.55
63C-103 237.50沙三下亚段泥岩2.7314.570.1997.2331.470.760.96
64C-103 312.50沙三下亚段泥岩3.0914.100.2297.4527.430.780.92
65C-103 387.50沙三下亚段泥岩2.9913.350.22100.0628.620.782.35

Fig.3

The relationship between TOC and element U"

Fig.4

The relationship between TOC and element V"

Fig.5

The test results of pyrite"

Table 2

Statistical table of average grain size of framboid pyrite in the study area"

序号井号深度/m层位

黄铁矿

颗粒数

平均粒径/μm氧化还原环境
1C-34 797.50沙一段965.4缺氧
2C-34 822.50沙一段855.1缺氧
3C-34 855.00沙一段895.6缺氧
4C-82 230.00沙一段1046.4低氧
5C-92 412.50沙一段1065.1缺氧
6C-82 335.00沙三中亚段737.5低氧
7C-92 777.50沙三中亚段985.7缺氧
8C-92 807.50沙三中亚段895.2缺氧
9C-82 387.50沙三下亚段905.6缺氧

Fig.6

Diagram of redox interface in lake water"

1 HAO F, ZHOU X H, ZHU Y M, et al. Mechanisms of petroleum accumulation in the Bozhong Sub-basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils[J]. Marine and Petroleum Geology, 2009, 26(8):1528-1542.
2 吴克强, 姜雪, 孙和风. 近海富生油凹陷湖相烃源岩发育模式:以黄河口凹陷古近系为例[J]. 地质科技情报, 2015, 34(2):63-70.
WU K Q, JIANG X, SUN H F. Model of lacustrine source rocks in offshore oil kitchen sags: A case study of Paleogene in Huanghekou Sag[J]. Geological Science and Technology Information, 2015, 34(2):63-70.
3 HAO F, ZHOU X H, ZHU Y M, et al. Lacustrine source rock deposition in response to co-evolution of envirionments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(1-3): 323-339.
4 LIU W, YE L, WANG Z Q, et al. Formation mechanism of organic-rich source rocks in Bozhong Sub-basin, Bohai Bay Basin,China[J]. Arabian Journal of Geosciences, 2019, 12(16):1-12.
5 腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2):193-200.
TENG G E, LIU W H, XU Y C, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science, 2005, 20(2):193-200.
6 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414.
XIONG X H, XIAO J F. Geochemical indicators of sedimentary environments-a summary[J].Earth and Environment,2011, 39(3): 405-414.
7 WANG G L, LI S, WANG T G, et al. Applications of molecular fossils in lacustrine stratigraphy[J]. Chinese Journal of Geochemistry, 2010, 29(1):15-20.
8 YIN J, WANG Q, HAO F, et al. Palaeoenvironmental reconstruction of lacustrine source rocks in the lower 1st Member of the Shahejie Formation in the Raoyang Sag and the Baxian Sag, Bohai Bay Basin, eastern China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 495:87-104.
9 郑海峰, 宋换新, 杨振瑞, 等. 湖北神农架地区南华系大塘坡组元素地球化学特征[J]. 地球科学与环境学报, 2019, 41(3):316-326.
ZHENG H F, SONG H X, YANG Z R, et al. Element geochemical characteristics of Datangpo Formation of Nanhua System in Shennongjia area of Hubei, China[J]. Journal of Earth Science and Environment, 2019, 41(3):316-326.
10 XIAO Y F, WU K, TIAN L, et al. Framboidal pyrite evidence for persistent low oxygen levels in shallow-marine facies of the Nanpanjiang Basin during the Permian-Triassic transition[J].Palaeogeography Palaeoclimatology Palaeoecology, 2018, 511: 243-255.
11 BREIT G N, WANTY R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J].Chemical Geology,1991,91(2):83-97.
12 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2):12-32.
13 SHUFANG W, DAZHONG D, YUMAN W, et al. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation,Southern Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,28:691-699.
14 HATCH J R, LEVENTHAL J S, MEYERS P A, et al. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1-3):65-82.
15 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
16 BOONNARONG A, AKKHAPUN W, QINGLAI F, et al. Paleoproductivity and paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand[J]. Journal of Earth Science, 2016, 27(3): 350-364.
17 GUOLIANG X, YULIN S, SHUGEN L, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate[J]. Marine & Petroleum Geology, 2018, 92:20-36.
18 ZHENG Y, ANDERSON R F, GEEN A V, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10):1759-1772.
19 FRANCOIS R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, Columbia British, Canada[J]. Marine Geology, 1988, 83(1-4):285-308.
20 KLINKHAMMER G P, PALMER M R. Uranium in the oceans: Where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7):1799-1806.
21 ZHENG Y, ANDERSON R F, GEEN A V, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24):4165-4178.
22 MCMANUS J, BERELSON W M, KLINKHAMMER G P, et al. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):95-108.
23 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4):289-318.
24 金强, 朱光有, 王娟. 咸化湖盆优质烃源岩的形成与分布[J]. 中国石油大学学报:自然科学版, 2008, 32(4):25-29.
JIN Q, ZHU G Y, WANG J. Deposition and distribution of high-potential source rocks in saline lacustrine environments[J]. Journal of China University of Petroleum: Edition of Natural Science, 2008, 32(4):25-29.
25 姜雪, 邹华耀, 庄新兵, 等. 辽东湾地区烃源岩特征及其主控因素[J].中国石油大学学报:自然科学版,2010,34(2):37-43,48.
JIANG X, ZOU H Y, ZHUANG X B, et al. Characteristics of hydrocarbon source rocks in Liaodong Bay area and its main controlling factors[J].Journal of China University of Petrole-um:Edition of Natural Science, 2010, 34(2):37-43,48.
26 廖卫. 二叠纪—三叠纪之交华南浅水台地环境的古氧相特征:来自微生物岩中草莓状黄铁矿和黄铁矿化化石的证据[D]. 武汉:中国地质大学(武汉), 2011.
LIAO W. Paleo-oxygenation Facies in Shallow-marine Carbonate Platform Across the Permian-Triassic Boundary in South China: Evidences from Pyrite Framboids and Pyritized Fossils in the Microbialite[D]. Wuhan:China University of Geosciences (Wuhan), 2011.
27 SUAN G, SCHOLLHORN I, SCHLOGL J, et al. Euxinic conditions and high sulfur burial near the European shelf margin (Pieniny Klippen Belt, Slovakia) during the Toarcian oceanic anoxic event[J]. Global and Planetary Change, 2018, 170:246-259.
28 MERINERO R, CÁRDENES V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth[J]. Mineralogy and Petrology, 2017, 112(4):577-589.
29 WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339.
30 CUTTER G A, VELINSKY D J. Temporal variations of sedimentary sulfur in a delaware salt marsh[J]. Marine Chemistry, 1988, 23(3-4):311-327.
31 MURAMOTO J A, HONJO S, FRY B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(2):S1151-S1187.
32 BOND D P G, WIGNALL P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Bulletin of the Geological Society of America, 2010, 122(7-8):1265-1279.
[1] Wang Tao-li,Hao Ai-sheng,Chen Qing,Li Chao,Wang Qing-tao,Lu Hong,Liu Da-yong. The study of main factors controlling the development of Wufeng Formation andLongmaxi Formation organic-rich shales in the Yichang area,Middle Yangtze Region [J]. Natural Gas Geoscience, 2018, 29(5): 616-631.
[2] Cao Tao-tao,Deng Mo,Song Zhi-guang,Liu Guang-xiang,Huang Yan-ran,Andrew Stefan Hursthouse. Study on the effect of pyrite on the accumulation of shale oil and gas [J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
[3] Du Yang, Fan Tai-liang, Gao Zhi-qian. Geochemical characteristics and their implications to diagenetic environment of Lower-Middle Ordovician carbonate rocks,Tarim Basin,China:A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop [J]. Natural Gas Geoscience, 2016, 27(8): 1509-1523.
[4] WU Sheng,TANG Da-zhen,YAN Qi-tuan,XU Hao,WANG Shu-ying,HAN Zhong-xi. Study on the Collection and Detection of Trace Elements in the Natural Gas [J]. Natural Gas Geoscience, 2015, 26(11): 2166-2171.
[5] ZHANG Yu,YANG Hua,WANG Duo-yun,FU Jin-hua,YAO Jing-li,XIN Bu-she. Geochemical Features of the Detrital Rocks of Tongchuan Formation in the Southern Ordos Basin and Its Constrains on Provenance [J]. Natural Gas Geoscience, 2014, 25(8): 1233-1241.
[6] ZHANG Chang-Jiang, LIU Guang-Xiang, ZENG Hua-Cheng, ZHANG Guan-Long. Depositional Environments and Controlling Factors ofPermian Source Rocks in Western Sichuan Basin [J]. Natural Gas Geoscience, 2012, 23(4): 626-635.
[7] LI Feng-Jie, LIU Dian-He, LIU Qi. Geochemical Characteristics and Genesis Discussion of  Wujiaping Formation Siliceous Rocks in Xuanhan Area of Sichuan Basin [J]. Natural Gas Geoscience, 2010, 21(1): 62-67.
[8] LU Hong-xuan; MENG Zi-fang;LI Bin;LI Xiang-Bo;ZHENG Min. EFFECT OF TRACE ELEMENT MOLYBDENUM ON HYDROCARBON GENERATION FROM LIGNITE BY PYROLYSIS [J]. Natural Gas Geoscience, 2007, 18(1): 104-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[2] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[3] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[4] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .
[5] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[6] . THE APPLIANCE OF SIMULATION EXPERIMENT OF POOL-FORMING IN DEVELOPMENT OF BAIY USHAN RESERVOIR[J]. Natural Gas Geoscience, 2006, 17(2): 219 -222 .
[7] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[8] LI Feng-jie~1,2,WANG Duo-yun~1. THE HIGH-RESOLUTION SEQUENCE STRATIGRAPHIC FEATURE OF YANCHANG FORMATION IN XIFENG OILFIELD, ORDOS BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 339 -344 .
[9] ZHAO Meng-jun,SONG Yan,LIU Shao-bo,QIN Sheng-fei,HONG Feng,FU Guo-you, DA Jiang. THE PRIMARY STUDY ON THE FORMATION OF OIL AND GAS FIELDS IN THE FORELAND BASINS IN CENTRAL AND WESTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(4): 445 -451 .
[10] YAO Ya-ming,ZHOU Ji-jun,HE Ming-xi,FU Dai-guo,CHEN Jian-jun.
IDEAS ON THE PETROLEUM GEOLOGY CONDITIONS OF YANJI BASIN
[J]. Natural Gas Geoscience, 2006, 17(4): 463 -467 .