Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (9): 1294-1305.doi: 10.11764/j.issn.1672-1926.2020.05.008

Previous Articles     Next Articles

Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin

Qiang NIU1(),Huan-xu ZHANG2,3(),Di ZHU4,Zhi-yao XU2,3,Yun-feng YANG2,3,An-xu DING5,He-qun GAO5,Li-sheng ZHANG1   

  1. 1.Geological Logging Company, SINOPEC Shengli Petroleum Engineering Co. Ltd. , Dongying 257000, China
    2.Suzhou Grand Energy Technology Co. Ltd. , Suzhou 215004, China
    3.Suzhou California Energy and Environment Research Institute Co. Ltd. , Suzhou 215004, China
    4.Energy Institute, Qilu University of Technology (Shandong Academy of Sciences),Shandong Provincial Key Laboratory of Biomass Gasification Technology, Ji’nan 250000, China
    5.SINOPEC East China Oil and Gas Company, Yangzhou 225000, China
  • Received:2020-01-06 Revised:2020-05-19 Online:2020-09-10 Published:2020-09-04
  • Contact: Huan-xu ZHANG E-mail:slniq@126.com;huanxu_zhang@sina.com

Abstract:

In order to analyze the carbon isotope characteristics of shale gas from the Wufeng-Longmaxi formations at different depths in more detail, and research the shale gas accumulation, three typical shale gas evaluation wells in southeastern Sichuan Basin were selected to carry out carbon isotope logging. The carbon isotope of mud gas was continuously sampled and measured with drilling, and the carbon isotope change during the gas release from cuttings was also measured. Based on data obtained from the isotope logging, the carbon isotope distribution and vertical variation, as well as the carbon isotope reversal and carbon isotope fractionation of shale gas are comprehensively analyzed, which reveals that the carbon isotope value of Wufeng-Longmaxi shale gas in the Sichuan Basin gradually decreases from the margin to the center of the basin, and this change is mainly controlled by the maturity of the organic matter. The carbon isotope characteristics of shale gas of these three wells have certain commonality, which indicates that shale gas accumulation rules were similar in this area. In sweet point, the carbon isotope fractionation of the top gas of the cuttings jar is much greater, and the amount of gas released from the cuttings is higher, reflecting this section has high initial pressure, large gas content, and more nano pores.

Key words: Shale gas, Isotope logging, Reversal of carbon isotope, Shale gas accumulation rules, Carbon isotope fractionationFoundation items:The National Science and Technology Major Project(Grant No. 2016ZX05006-002), The Scientific Research and Technological Development Project of RIPED(Grant No. 2018ycq01)

CLC Number: 

  • TE122.2+13

Fig.1

Stratigraphy division of Wufeng-Longmaxi formations of southeastern Sichuan Basin"

Table 1

Wufeng-Longmaxi formations shale gas carbon isotope of different area in Sichuan Basin"

地区井号湿度/%δ13C/‰δ13C平均值/‰数据来源
CH4C2H6C3H8CH4C2H6C3H8
威远W2010.48-37.3-38.2-36.0-39.5-43.5[14]
W2010.48-36.9-37.9
W201-H30.37-35.6-39.4
W201-H30.36-35.4-40.8
W201-H10.34-35.1-38.7
W201-H10.37-35.4-37.9
W2020.70-36.9-42.8-43.5
W2030.58-35.7-40.4
富顺—永川L1010.24-33.2-33.1-33.0-35.0-39.4[14]
Y201-H20.34-33.8-36.0-39.4
H201-H0.69-32.0-35.9
南川阳春沟构造SY30.9-34.7-35.1-32.0-34.4本文
SY32.2-33.1-36.2
SY32.4-34.2-35.6
SY32.6-35.0-35.5
南川平桥南构造JY10-10-29.9-32.9-29.8-32.95本文
JY10-10-29.9-33.0
JY10-10-29.8-33.2
JY10-10-29.8-32.7
焦石JY1HF-30.1-35.5-30.2-34.6-36.7[15]
JY1HF-30.6-34.1-36.3
JY1-3HF-29.4-34.5-36.3
JY1-3HF-29.5-34.6-35.0
JY4HF-31.2-35.1-36.3
JY6-2HF-30.3-34.3
JY6-2HF-30.0-34.3
JY7-2HF-29.1-33.9-37.1
JY9-2HF-30.0-34.4-37.5
JY10-2HF-31.9-35.1
JY12-30.69-30.3-34.7-38.4
JY84-20.2-30.9-33.0-30.0-33.1本文
JY84-20.4-29.5-33.0
JY84-20.1-32.0-32.9
JY84-30.2-28.6-33.3
JY84-30.2-29.8-33.1
JY84-30.2-29.3-33.1
丁山DY50.9-29.2-33.0-29.3-33.5本文
DY50.4-29.9-33.8
DY50.2-28.5-35.0
DY50.4-29.6-32.0
长宁—昭通Z1040.53-26.7-31.7-33.1-28.0-33.2-35.2[16]
YSL1-1H0.48-27.4-31.6-33.2
NH2-10.53-28.7-33.8-35.4
NH2-20.48-28.9-34.0
NH3-10.55-27.6-32.3-35.0
NH3-20.46-28.9-33.4-36.0
NH3-60.53-29.4-33.1-35.1
YH1-30.61-27.7-32.8-36.0
YH1-50.50-26.8-33.1-35.7
N201-H10.51-27.0-34.3
N201-H10.54-27.8-34.1
N2110.35-28.4-33.8-36.2

Fig.2

Carbon isotope vs graptolite equivalent RO of Wufeng-Longmaxi formations shale gas of Sichuan Basin"

Fig.3

Carbon isotope reversal characteristics of typical shale gas"

Fig.4

Stages of shale gas carbon isotope reversal(according to Ref.[13])"

Fig.5

Carbon isotope variation with gas component of methane, ethane, propane"

Fig.6

Working site of carbon isotope logging"

Fig.7

Profiles of mudgas carbon isotope logging"

Fig.8

Organic matter carbon isotope during Hirnantian Stage (modified from Ref.[26])"

Fig.9

Cutting head space gas carbon isotope vatiation of Well DY5"

1 吴伟,罗超,张鉴,等.油型气乙烷碳同位素演化规律与成因[J].石油学报, 2016,37(12): 1463-1471.
WU W, LUO C, ZHANG J, et al. Evolution law and genesis of ethane carbon isotope of oil type gas[J]. Acta Petrolei Sinica, 2016,37(12): 1463-1471.
2 郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.
GUO T L, LIU R B. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in Well JY1 as an example[J]. Natural Gas Geoscience, 2013,24(4):643-651.
3 CHEN X,RONG J Y,CHARLES E M, et al. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, south China,with a global correlation[J]. Geological Magazine,2000,137(6):623-650.
4 牟传龙,周恳恳,梁薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
MU C L, ZHOU K K, LIANG W, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the middle-upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011,85(4):526-532.
5 高波.四川盆地龙马溪组页岩气地球化学特征及其地质意义[J].天然气地球科学,2015, 26(6): 1173-1182.
GAO B. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience, 2015, 26(6): 1173-1182.
6 王晔,邱楠生,仰云峰,等.四川盆地五峰组—龙马溪组页岩成熟度研究[J].地球科学,2019,44(3):953-971.
WANG Y, QIU N S, YANG Y F, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science,2019,44(3):953-971.
7 仰云峰.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J].石油实验地质,2016,38(4):466-472.
YANG Y F, Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J].Petroleum Geology and Experiment, 2016,38(4):466-472.
8 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘, 2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers,2016, 23(1):1-10.
9 戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6.
DAI J X, XIA X Y, QIN S F, et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J]. Oil and Gas Geology, 2003,24(1):1-6.
10 BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry, 2010, 41(12):1285-1296.
11 张同伟,王先彬,陈践发,等.天然气运移的气体组分的地球化学示踪[J].沉积学报,1999,17(4): 130-135.
ZHANG T W, WANG X B, CHEN J F, et al. Chemical composition of gases as a geochemical tracer of natural gas migration[J]. Acta Sedimentologica Sinica,1999,17(4): 130-135.
12 TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta,2000,64(15):2673-2687.
13 XIA X Y, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology,2013,339 (2):205-212.
14 DAI J, ZOU C, LIAO S, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
15 刘若冰. 中国首个大型页岩气田典型特征[J]. 天然气地球科学,2015, 26(8): 1488-1498.
LIU R B. Typical features of the first giant shale gas field in China[J]. Natural Gas Geoscience, 2015, 26(8): 1488-1498.
16 冯子齐,刘丹,黄士鹏,等.四川盆地长宁地区志留系页岩气碳同位素组成[J].石油勘探与开发, 2016,43(5):705-713.
FENG Z Q, LIU D, HUANG S P, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016,43(5):705-713.
17 ZUMBERGE J, FERWORN K J, BROWN S. Isotopic reversal(‘rollover’)in shale gases produced from the Mississippian Barnett and Fayetteville Formations[J].Marine and Petroleum Geology, 2012, 31(1):43-52.
18 TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J].Chemical Geology,2013, 339(15):194-204.
19 RODRIGUEZ N D, PHILP R P. Geochemical characterization of gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2010, 94(11):1641-1656.
20 OSBORN S G, MCINTOSH J C. Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin[J]. Applied Geochemistry, 2010, 25(3):456-471.
21 MARTINI A M, WALTER L M, MCINTOSH J C. Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan Basins[J]. AAPG Bulletin, 2008, 92(3):327-339.
22 STRAPOC D, MASTALERZ M, SCHIMMELMANN A, et al. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin[J]. AAPG Bulletin, 2010, 94(11):1713-1740.
23 WU S, DEEV A, HAUGHT M, et al. Hollow waveguide quantum cascade laser spectrometer as an online microliter sensor for gas chromatography[J]. Journal of Chromatography A,2008, 1188 (2):327-330.
24 田辉,肖贤明,李贤庆,等.海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J].地球化学, 2007,36(1) : 71-77.
TIAN H, XIAO X M, LI Q X, et al.Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J]. Geochimica, 2007,36(1):71-77.
25 张家政,朱地,慈兴华,等.湖北宜昌地区鄂阳页2井牛蹄塘组和陡山沱组页岩气随钻碳同位素特征及勘探意义[J].石油学报,2019,40(11):1346-1357.
ZHANG J Z,ZHU D, CI X H, et al. Isotope logging of Niutitang and Doushantuo shale during Eyangye-2 well drilling and the revelation for shale gas exploration[J]. Acta Petrolei Sinica, 2019,40(11):1346-1357.
26 陈超.川南—黔北地区晚奥陶世—早志留世地史转折期古海洋、古气候演变及烃源岩成因机制研究[D].北京:中国地质大学,2018.
CHEN C. Research on Paleoceanography, Paleoclimate and Formation Mechanism of Source Rock during Geologic Transition Period from Late Ordovician to Early Silurian in Southern Sichuan Province - Northern Guizhou Province, South China[D]. Beijing: Geology University of China,2018.
27 BERGSTRÖM S M, ERIKSSON M E, YOUNG S A, et al. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: A refined integration with the graptolite and conodont zone successions[J]. GFF, 2014, 136(2): 355-386.
28 BERGSTRÖMS M, SALTZMAN M M, SCHMITZ B. First record of theHirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications[J]. Geological Magazine, 2006, 143(5): 657-678.
29 MUNNECKEA, ZHANG Y, LIU X, et al. Stable carbon isotope stratigraphy in the Ordovician of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1-4): 17-43.
30 FAN J, PENG P A, MELCHIN M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 276(1-4): 160-169.
31 SALTZMAN M R, YOUNG S A. Long-lived glaciation in the Late Ordovician Isotopic and sequence-stratigraphic evidence from western Laurentia[J].Geology,2005, 33(2): 109.
32 高玉巧,高和群,何希鹏,等.四川盆地东南部页岩气同位素分馏特征及对产能的指示意义[J].石油实验地质,2019,41(6):865-870.
GAO Y Q, GAO H Q, HE X P, et al. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. Petroleum Geology and Experiment, 2019,41(6):865-870.
33 孟强, 王晓锋, 王香增, 等. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333-340.
MENG Q, WANG X F, WANG X Z, et al. Variation of carbon isotopic composition of Alkanes during the shale gas desorption process and its geological significance: A case study of Chang 7 shale of Yanchang Formation in Yishan Slope southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015,26(2):333-340.
34 XIA X, TANG Y C. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012(77): 489-503
[1] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[2] Teng-fei LI, Hui TIAN, Xian-ming XIAO, Peng CHENG, Xing WANG, Yao-wen WU, Zi-jin WU. The effect of particle size on low pressure gas adsorption experiments for high-maturity shale [J]. Natural Gas Geoscience, 2020, 31(9): 1271-1284.
[3] Lu CHEN, Zhi-Ming HU, Wei XIONG, Xiang-Gang DUAN, Jin CHANG. Diffusion experiment of shale gas and mathematical model [J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293.
[4] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[5] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[6] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[7] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[8] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[9] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[10] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[11] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[12] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[13] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[14] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[15] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!