Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (7): 1004-1015.doi: 10.11764/j.issn.1672-1926.2020.05.001

Previous Articles     Next Articles

The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration

De-yong SHAO1(),Liu-liu ZHANG2,Ya-jun ZHANG2,Yu ZHANG1,Huan LUO2,Bo QIAO2,Jian-ping YAN2,Tong-wei ZHANG1()   

  1. 1.State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
    2.School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2020-01-14 Revised:2020-05-05 Online:2020-07-10 Published:2020-07-02
  • Contact: Tong-wei ZHANG E-mail:shaody1989@163.com;zhangtw@lzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(41730421)

Abstract:

In this study, 37 samples of Lower Cambrian shale collected from different sections involving shale gas exploration-breakthrough areas (Well WPZK001 from Yichang City, Changyang section from Hubei Province, and Well W001-4 from Weiyuan County) and -failure areas (Kaiyang section from Guizhou Province and Youyang section from Chongqing City) both in the Middle-Upper Yangtze region were investigated by water uptake experiments, with a similar comparative study of Silurian Longmaxi shale samples in the Sichuan Basin. The comparative results showed that the water uptake content for the Lower Cambrian organic-rich shale samples from shale gas exploration-breakthrough areas are primarily controlled by TOC content, showing a positive correlative increase of water content and TOC content, which is similar to that of Silurian Longmaxi organic-rich shale samples in the Sichuan Basin. In contrast, the water uptake content for the Lower Cambrian organic-rich shale samples from shale gas exploration-failure areas generally showed a positive correlation with clay and carbonate contents, and there is no correlation with TOC content. It implies that the characteristics of pore network in the Lower Cambrian organic-rich shales from Middle-Upper Yangtze region, especially the development of organic matter-hosted pores, display significant differences regionally. Importantly, it provides a newly-developed strategy on the study of gas content variation in Cambrian shale from Middle-Upper Yangtze region by investigating the coupling mechanism of pore development and mineral composition as well as origins in organic-rich shales.

Key words: Middle-Upper Yangtze region, Lower Cambrian, Shale gas, Water uptake experiment

CLC Number: 

  • TE122

Fig. 1

Location for the Lower Cambrian organic-rich shales (modified from the Refs.[11,29])"

Table 1

TOC and saturated water contents for the Lower Cambrian shale in the Middle-Upper Yangtze region and the Silurian Longmaxi shale in the Changning section from Sichuan Basin"

采样剖面/地层编号TOC/%饱和吸水量/(mg/g岩石)采样剖面编号TOC/ %

饱和吸水量/

(mg/g岩石)

湖北长阳剖面/

水井沱组

CY-040.323.39

重庆酉阳剖面/

牛蹄塘组

DQ-036.8828.99
CY-130.693.8DQ-0611.3721.78
CY-190.911.62DQ-128.829.55
CY-430.9311.2DQ-217.9329.48
CY-521.244.68DQ-279.3230.12
CY-553.3516.46DQ-345.525.5
CY-592.348.83

贵州开阳剖面/

牛蹄塘组

333.53.6622.74
CY-662.299.77347.76.6719.54

湖北宜昌WPZK井剖面/

水井沱组

WPZK-215.8613.1354.81.8617.6
WPZK-397.7818.33363.82.5324.04
WPZK-445.718.96385.65.6818.73
WPZK-514.3414.68389.23.4814.96
WPZK-811.565.87408.84.8821.74
WPZK-942.614.36

四川长宁剖面/

龙马溪组

CN-SH-015.4523.16

四川威远W001-4井剖面/

筇竹寺组

W-101.7711.69CN-SH-046.9723.71
W-190.316.87CN-SH-083.7115.04
W-460.7811.39CN-SH-093.3814.49
W-550.546.47CN-SH-113.4215.49
W-670.568.5CN-SH-133.3512.99
W-1051.139.84CN-SH-421.1718.02
W-1111.6312.29CN-SH-581.0613.52
W-1343.048.09
W-1411.1812.44
W-1464.5515.05

Fig. 2

Water uptake curves for the Lower Cambrian shale in the Middle-Upper Yangtze region and the Lower Silurian Longmaxi shale in Changning area from Sichuan Basin"

Fig.3

Relationship between saturated-water content and TOC for the Lower Cambrian shales in the Middle-Upper Yangtze region and Lower Silurian shale in Changning area from Sichuan Basin"

Fig.4

Relationship between saturated-water content and mineral composition for the Niutitang Formation in Kaiyang section from Guizhou Province, Shuijingtuo Formation in Changyang section from Hubei Province, and Longmaxi Formation in Changning section from Sichuan Province"

Fig. 5

Relationship between TOC and mineral composition for the Niutitang Formation in Kaiyang section from Guizhou Province, Shuijingtuo Formation in Changyang section from Hubei Province, and Longmaxi Formation in Changning section from Sichuan Basin"

Fig.6

Comparison of organic-hosted pores in the Lower Cambrian shales in the Middle-Upper Yangtze region and the Lower Silurian Longmaxi shale in Changning area from Sichuan Basin"

1 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6): 689-701.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges, and prospects (I) [J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
2 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1):19-32.
3 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发,2016,43(4):499-510.
ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4):499-510.
4 王玉芳,冷济高,李鹏,等.黔东北地区下寒武统牛蹄塘组页岩气特征及主控因素分析[J].古地理学报,2016,18(4): 605-614.
WANG Y F, LENG J G, LI P, et al. Characteristics and its main enrichment controlling factors of shale gas of the Lower Cambrian Niutitang Formation in northeastern Guizhou Province[J]. Journal of Palaeogeography,2016, 18(4): 605-614.
5 张同伟,张亚军,贾敏,等.中国南方寒武系海相页岩含气性主控因素的科学问题[J].矿物岩石地球化学通报, 2018, 37(4):572-579.
ZHANG T W, ZHANG Y J, JIA M, et al. Key scientific issues on controlling the variation of gas contents of Cambrian marine shales in southern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2018, 37(4):572-579.
6 陈孝红,王传尚,刘安,等.湖北宜昌地区寒武系水井沱组探获页岩气[J].中国地质,2017,44(1):188-189.
CHEN X H, WANG C S, LIU A, et al. The discovery of the shale gas in the Cambrian Shuijingtuo Formation of Yichang, Hubei Province[J]. Geology in China,2017,44(1):188-189.
7 翟刚毅,包书景,王玉芳,等.古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J].地球学报,2017,38(4):441-447.
ZHAI G Y, BAO S J, WANG Y F, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4):441-447.
8 罗胜元,刘安,李海,等.中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素[J].石油实验地质,2019, 41(1):56-67.
LUO S Y, LIU A, LI H, et al. Gas-bearing characteristics and controls of the Cambrian Shuijingtuo Formation in Yichang area, Middle Yangtze region[J]. Petroleum Geology & Experiment, 2019, 41(1):56-67.
9 王玉满,董大忠,程相志,等.海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业,2014,34(8):1-7.
WANG Y M, DONG D Z, CHENG X Z, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case of the Lower Cambrian Qiongzhusi shale in southern Sichuan Basin[J]. Natural Gas Industry,2014,34(8):1-7.
10 ZHAI G, LI J, JIAO Y, et al. Applications of chemostratigraphy in a characterization of shale gas sedimentary microfacies and predictions of sweet spots:Taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology,2019, 109:547-560.
11 赵建华,金之钧,林畅松,等.上扬子地区下寒武统筇竹寺组页岩沉积环境[J].石油与天然气地质,2019, 40(4):701-715.
ZHAO J H, JIN Z J, LIN C S, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4):701-715.
12 YANG W, ZUO R, JIANG Z, et al. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98:746-762.
13 周文,徐浩,余谦,等.四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J].岩性油气藏, 2016,28(5):18-25.
ZHOU W, XU H, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016,28(5):18-25.
14 焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展[J].高校地质学报,2014,20(1):151-161.
JIAO K, YAO S P, WU H, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014,20(1):151-161.
15 徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征[J].岩性油气藏,2015,27(4):32-39.
XU Y, LV C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin[J]. Lithologic Reservoirs, 2015,27(4):32-39.
16 张涛,张希巍.页岩孔隙定性与定量方法的对比研究[J].天然气勘探与开发,2017,40(4):34-43.
ZHANG T, ZHANF X W. Comparative study on qualitative and quantitative methods for shale pore characterization[J]. Natural Gas Exploration and Development,2017,40(4):34-43.
17 吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015,42(2):167-176.
WU S T, ZHU R K, CUI J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development,2015,42(2):167-176.
18 MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian),Pennsylvania[J].AAPG Bulletin, 2013, 97:177-200.
19 LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in Siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79: 848-861.
20 BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012,103:3-11.
21 CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012,103:26-31.
22 KO L T, LOUCKS R G, ZHANG T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016,100(11):1693-1722.
23 KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology,2018,190:3-28.
24 SHAO D, ZHANG T, KO L T, et al. Experimental investigation of oil generation, retention, and expulsion within Type II kerogen-dominated marine shales: Insights from gold-tube nonhydrous pyrolysis of Barnett and Woodford Shales using miniature core plugs[J]. International Journal of Coal Geology, 2020,217:103337.
25 吕海刚,于萍,闫建萍,等.四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J].天然气地球科学,2015,26(8):1556-1562.
LV H G, YU P, YAN J P, et al. Experimental investigation of water absorption and its significance on pore network connectivity in mudstone from Silurian Longmaxi Formation,Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1556-1562.
26 沈伟军,郭伟,李熙喆,等.水蒸气吸附法和氮气吸附法在表征页岩孔隙结构中的对比分析[J].天然气工业, 2017,37(S1):78-84.
SHEN W J,GUO W,LI X Z, et al.Comparative analysis of water vapor adsorption method and nitrogen adsorption method in characterization of shale pore structure[J]. Natural Gas Industry,2017:37(S1):78-84.
27 张亚军.四川盆地及邻区下古生界海相泥页岩吸水实验研究[D].兰州:兰州大学,2019.
ZHANG Y J. Experimental Study on Water Absorption of Lower Paleozoic Marine Mudstones in Sichuan Basin and Adjacent Areas[D]. Lanzhou: Lanzhou University, 2019.
28 梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16.
LIANG D G, GUO T L, CHEN J P, et al. Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology,2008,13(2):1-16.
29 中国地质调查局.中国页岩气资源调查报告[R].北京:中国地质调查局,2014.http://www.cgs.gov.cn/xwl/ddyw/201603/ t20160309_302195.html.
China Geological Survey. China's shale gas resources survey report[R].Beijing: China Geological Survey,2014.
30 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96:1071-1098.
31 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
32 ZHAO J, HU Q, LIU K, et al. Pore connectivity characterization of shale using integrated wood’s metal impregnation, microscopy, tomography, tracer mapping and porosimetry[J]. Fuel. 2020, 259:116248.
33 冯东,李相方,李靖,等.黏土矿物吸附水蒸气特征及对孔隙分布的影响[J].中国石油大学学报:自然科学版,2018, 42(2):110-118.
FENG D, LI X F, LI J, et al. Water adsorption isotherm and its effects on pore size distribution of clay minerals[J]. Journal of China University of Petroleum,2018, 42(2):110-118.
34 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报:自然科学版, 2014,50(3):476-486.
WANG S F, ZOU C N, DONG D Z, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naruralium Universitis Pekinensis,2014,50(3):476-486.
35 卢龙飞,秦建中,申宝剑,等.川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J].石油实验地质,2016,38(4):460-472.
LU L F, QIN J Z, SHEN B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng–Longmaxi Formation in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(4):460-472.
36 卢龙飞,秦建中,申宝剑,等.中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J].地学前缘,2018, 25(4):226-236.
LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4):226-236.
37 赵建华,金之钧,金振奎,等.四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J].天然气地球科学,2016, 27(2):377-386.
ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience,2016,27(2):377-386.
38 王开亮,李凯强,王励坤,等.四川盆地东缘石柱地区五峰—龙马溪组页岩矿物组分及含气性特征[J].兰州大学学报:自然科学版, 2018, 54(3):285-302.
WANG K L, LI K Q, WANG L K, et al. Mineral composition and gas-bearing characteristics of Wufeng-Longmaxi shale in Shizhu area, eastern Sichuan Basin[J].Journal of Lanzhou University: Natural Sciences,2018, 54(3):285-302.
39 ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J].Journal of Natural Gas Science and Engineering,2017,38:21-38.
40 YANG X Y, YAN D T, WEI X S, et al. Different formation mechanism of quartz in siliceous and argillaceous shales:A case study of Longmaxi Formation in South China[J]. Marine and Petroleum Geology,2018,94:80-94.
41 王淑芳,董大忠,王玉满,等.中美海相页岩气地质特征对比研究[J].天然气地质科学,2015,26(9):1666-1678.
WANG S F, DONG D Z, WANG Y M, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J].Natural Gas Geoscience,2015,26(9):1666-1678.
42 刘忠宝,边瑞康,高波,等.上扬子地区下寒武统页岩有机质孔隙类型及发育特征[J].世界地质, 2019,38(4):999-1011.
LIU Z B, BIAN R K, GAO B, et al. Organic matter pore types and development characteristics of Lower Cambrian shale in Upper Yangtze area[J]. Global Geology,2019,38(4):999-1011.
43 XI Z, TANG S, LI J, et al. Pore characterization and the controls of organic matter and quartz on pore structure: Case study of the Niutitang Formation of northern Guizhou Province, South China[J]. Journal of Natural Gas Science and Engineering,2019,61:18-31.
44 MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin,2012,96(8):1553-1578.
45 牛杏.湘鄂西下寒武统牛蹄塘组石英成因类型及其对页岩储层物性的影响[D].武汉:中国地质大学, 2019.
NIU X. Genetic Types of Quartz and Its Influence on Shale Reservoir Physical Properties of the Lower Cambrian Niutitang Formation in Western Hunan and Hubei[D]. Wuhan: China University of Geoscience, 2019.
46 WU C J, TUO J C, ZHANG L F, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017, 178:13-25.
47 何庆,何生,董田,等.鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素[J].石油实验地质, 2019,41(4):530-539.
HE Q, HE S, DONG T, et al. Pore structure characteristics and controls of Lower Cambrian Niutitang Formation, western Hubei Province[J]. Petroleum Geology & Experiment, 2019,41(4):530-539.
48 刘忠宝,高波,武清钊,等.页岩有机—无机复合型孔隙及其控气作用——以川西南地区筇竹寺组为例[J]. 海相油气地质,2018,23(4):42-50.
LIU Z B, GAO B, WU Q Z, et al. Organic-inorganic compound pore system and its gas-controlling significance: a case study of the Cambrian Qiongzhusi Formation in southwestern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2018, 23(4): 42-50.
[1] Ping YU, Yu ZHANG, Jian-ping YAN, De-yong SHAO, Liu-liu ZHANG, Huan LUO, Bo QIAO, Tong-wei ZHANG. The characteristics of water uptake and the comparative studies on three methods of determining porosity in organic-rich shale of Longmaxi Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(7): 1016-1027.
[2] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[3] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[4] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[5] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[6] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[7] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[8] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[9] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[10] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[11] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
[12] Liang Xiong. The characteristics of pore development of the Lower Cambrian organic⁃rich shale in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331.
[13] Lei-fu Zhang, Da-zhong Dong, Sha-sha Sun, Rong-ze Yu, Lin Li, Shi-yao Lin, Xiao-hu Ouyang, Zhen-sheng Shi, Jin Wu, Yan Chang, Chao Ma, Ning Li. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: Case study of Zhaotong national demonstration area of Yangtze region [J]. Natural Gas Geoscience, 2019, 30(9): 1332-1340.
[14] Meng⁃qi Zhang, Cai⁃neng Zou, Ping Guan, Da⁃zhong Dong, Sha⁃sha Sun, Zhen⁃sheng Shi, Zhi⁃xin Li, Zi⁃qi Feng, Lilamaocaidan. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area [J]. Natural Gas Geoscience, 2019, 30(9): 1349-1361.
[15] Wang Ke, Li Hai-tao, Li Liu-jie, Zhang Qing, Bu Cheng-zhong, Wang Zhi-qiang. Research on three widely-used empirical decline methods for shale gas wells in Weiyuan block of the Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 946-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!