Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (8): 1052-1068.doi: 10.11764/j.issn.1672-1926.2020.04.031

Previous Articles     Next Articles

Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze

Sheng-yuan LUO1(),Xiao-hong CHEN1,Yong YUE1,Pei-jun LI1,Quan-sheng CAI1,Rui-zhi YANG2   

  1. 1.Wuhan Center of China Geological Survey, Wuhan 430205, China
    2.Wuhan Zondy Cyber?Tech co. , Ltd. , Wuhan 430074. China
  • Received:2020-03-17 Revised:2020-04-20 Online:2020-08-10 Published:2020-07-29

Abstract:

The Yichang slope, located in western Hubei Province, is a new area for shale gas exploration of the Cambrian strata outside the Sichuan Basin. Few studies have focused on the shale gas enrichment characteristics of the Yichang slope, which developed on the ancient Huangling anticline. Based on the analysis of sedimentary, structural and the latest seismic and drilling data, as well as laboratory test, the sedimentary, tectonic and hydrocarbon accumulation characteristics are analyzed. Compared to other region of the Middle Yangtze, it is conformed that the study area has experienced three important key tectonic stages, namely the embryonic uplift in the Indosinian Period, the rapid uplift and denudation in the Yanshan Period, and the filling and reconstruction in the Himalayan Period, respectively. The relatively stable tectonic conditions in Yichang area have important influences on shale gas accumulation: (1) At the end of the Tongwan tectonic movement, the paleogeographic pattern of early Cambrian had a direct influence on the distribution of organic shale in Yichang area, and played an important role in controlling the formation and distribution of shale gas. A positive correlation between gas content and TOC content indicate that the abundance of organic matter is the key factor influencing shale gas enrichment. (2) The Huangling anticline, which began to rise in the Indosinian tectonic movement and rose rapidly in the Yanshan movement, controlled the structural subsidence of the Yichang area. The Lower Paleozoic shale strata is characterized by suitable burial depth, earlier tectonic uplifting than the west Hubei area. This relatively lower thermal maturity of the organic matters in the Sinian-Early Paleozoic shale is particularly special among the high maturity background in the south China. Organic nanopores formed an important shale gas storage space. (3) This ancient anticline played an important role in protecting the Yichang slope from suffering structural alteration and destruction during the multi-stage strong tectonic activities of the Mesozoic and Cenozoic in the South China. Tectonic activities are characterized by structural uplift with limited fracture activity and weaker tectonic deformation. Although significant uplift and erosion of overburden rocks occurred in the Late Indosinian orogeny, the Yichang area was not significantly influenced during the tectonic movement comparing to the surrounding area. The Shuijingtuo shale in Yichang area is characterized by suitable structure preservation and low permeability. Shale gas is preserved effectively in this monoclinal structure and becomes the main exploration target in this area. (4) Bedding slip joint related to stratum slip shear joint during thrusting was an important reservoir space for shale gas. Shale gas exploration of the Yichang area confirmed that the paleo-uplift, the periphery of the paleo-tectonic slope, and the fault footwall of the thrust nappe structure are favorable exploration areas for shale gas.

Key words: Shale gas, Uplift, Hydrocarbon accumulation, The Lower Cambrian Shuijingtuo Formation, Yichang slope, Western HubeiFoundation items:The National Science and Technology Major Project (Grant No. 2016ZX05034001-002), The Geological Survey Project of China Geological Survey (Grant No. D20179615).

CLC Number: 

  • TE122.2

Table 1

Natural gas and shale gas showing in the Yichang area"

层位井号类型含气显示描述
陡山沱组 (Z1d阳页1页岩气现场解析气总含量为0.12~4.8 m3/t,页岩厚141 m,直井压裂产量为5 460 m3/d
宜参1页岩气气测全烃最高达46.62%,未经人工改造情况下获得页岩气流,点火成功
宜页1页岩气厚120 m,现场解析总含气量为0.40~2.0 m3/t,平均为1.08 m3/t,解析气点火可燃
秭地1页岩气现场解析总含气量为0.473~1.496 m3/t,甲烷含量为70.26%~94.03%
秭地2页岩气现场解析测试解吸气最高达0.92 m3/t,总含气量最高为1.67 m3/t

灯影组

(Z2dy

阳页1常规气气测全烃最高1.89%,全烃异常值大于1%的地层累计厚40.5 m
宜地4沥青灯一段内部及灯四段顶部均见沥青
宜地3常规气石板滩段泥晶灰岩含气,现场解析总含气量为1.34~2.43 m3/t
宜页1常规气石板滩段纹层状灰岩见气,气测全烃0.477%~1.741%,46 m厚全烃均大于1%
宜参3常规气石板滩段纹层状灰岩见气,3层累计22 m全烃均大于1%,气测全烃0.477%~1.741%,试气获未平衡产能1 363~1 504 m3/d
宜3常规气江汉盆地西缘,灯影组中部求产水产量为475 m3/d,气产量为8.149 m3/d

水井沱组

(∈1s

阳页1页岩气现场解析总含气量为0.32~4.48 m3/t,平均2.3 m3/t;其水力压裂井阳页1HF(水平段1 836 m,33段)页岩气产量为7.83×104 m3/d
宜地2页岩气现场解析总含气量为0.17~5.58 m3/t,平均为2.24 m3/t,总含气量大于2 m3/t厚46 m
宜地4页岩气气测异常,全烃最高达11%;现场解析总含气量为0.5~3.13 m3/t,平均为1.54 m3/t
宜页1页岩气气测异常,全烃由0.123%上升到18.965%,甲烷由0.11%上升到14.14%;现场解析总含气量为0.58~5.48 m3/t,平均为2.05 m3/t,含气量大于2 m3/t的有35 m,其水力压裂井宜页1HF井(水平段1 816 m)页岩气产量为6.02×104 m3/d
秭地1页岩气现场解析总含气量为0.234~1.047 m3/t,甲烷含量为15.8%~92.57%
秭地2页岩气气测录井全烃0.57%~14.5%;现场解析总含气量为0.23~4.45 m3/t,平均为2.15 m3/t;最优质30 m层段平均含气量为2.88 m3/t

天河板组— 石龙洞组

(∈2t—2sl

阳页1常规气天河板钻遇裂缝性天然气,全烃最高66.89%
宜地2常规气灰岩段气测异常并发生井喷;全烃含量最高达9%,气液分离点火火焰高达2~3 m
宜地4沥青粗晶白云岩孔缝见沥青充填

五峰组—

龙马溪组

(O3w—S1l

宜页3页岩气页岩厚38 m,现场解析气总含量最大为1.78 m3/t
荆101页岩气现场解析总含气量为1.7~7.2 m3/t,平均为4.3 m3/t
荆102页岩气现场解析总含气量为1.4~6.0 m3/t,平均为3.7 m3/t
宜地1页岩气页岩厚33 m,解析气含气量为1.69~3.67 m3/t,解析气中甲烷占70.58%~93.43%
宜探1页岩气现场解析总含气量为1.24~4.3 m3/t,平均为2.75 m3/t,水平井产气量约为(4~5)×104 m3/d
宜页2页岩气页岩厚28 m,现场解析气总含量为0.62~3.29 m3/t,平均为1.63 m3/t,其水力压裂井宜页2HF井(水平段506.31 m)页岩气产量为3.15×104 m3/d
宜志页1页岩气页岩地质特征与宜页2井类似,志页1HF井水平段长2 000多m,分24段进行大型水力压裂,试气获工业气流

Fig.1

Geological background map of the study area"

Fig.2

Tectonic and sedimentary evolution of the Yichang area"

Fig.3

Stratigraphy comparison of Silurian-Triassic in Yichang slope(see Fig.1 for corresponding well location)"

Fig.4

Sedimentary characteristics of the Early Cambrian in Yichang area"

Table 2

Comparison of sedimentary thickness between typical wells, shale geochemical characteristics and gas content in Yichang area"

井号

古地理

位置

灯影组厚度 /m水井沱组厚度 /m连续页岩厚度 /m

TOC>2%

页岩厚度/ m

页岩TOC/ %页岩RO/ %现场解析含气量 /(m3/t)
宜探2台地523.055.038.0----
宜页3台内洼陷-84.048.015(0.18~4.77)/1.34-(0.20~0.94)/0.33
宜参1台缘隆起617.09.03.0-< 0.5--
宜地3台缘隆起624.48.64.05-< 0.5--
宜参3台缘隆起662.85.22.65-< 0.5--
宜地5台缘隆起615.318.013.99-< 0.5--
宜参2台缘斜坡42962.231.9813.7(0.1~7.91)/1.91--
秭地2台缘斜坡420.879.663.322.66(0.25~5.02)/2.34(1.97~2.59)/2.33(0.23~4.45)/2.15
宜地2台缘斜坡-101.672.3228.0(0.52~5.96)/2.26(2.26~2.37)/2.35(0.17~5.58)/2.24
宜页1台缘斜坡235.0136.186.036.7(0.43~10.45)/2.7(2.18~2.30)/2.26(0.58~5.48)/2.05
秭地1陆棚247.72>290104.8144.1(0.53~8.72)/2.14(1.43~1.79)/1.61(0.23~1.05)/0.59
阳页1陆棚176.5469.5141.041(1.0~5.5)/2.2(2.5~3.7)/2.7(0.32~4.48)/2.30

Fig.5

Relationship between gas content and TOC in Shuijingtuo shale in Yichang area(data of Well Yangye 1 from Ref.[11])"

Fig 6

Thermal maturity reflected by equal vitrinite values of the Shuijingtuo shale in Yichang area[35] (a) and nanopores associated with organic matter in typical well (b)"

Fig.7

Seismic profile in the Yichang and around areas"

Fig.8

Crack development pattern in Yichang slope area①宜地2井天河板组裂缝性气藏发生井喷;②阳页1井中、上寒武统地层重复;③灯影组—石龙洞组多次发生井漏和放空现象"

Fig.9

The fracture distribution in typical wells"

1 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010, 37(6):641-653.
2 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
MA Y S, CAI X Y, ZHAO P R. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4):561-574.
3 董大忠,高世葵,黄金亮,等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15.
DONG D Z, GAO S K, HUANG J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12):1-15.
4 何治亮,胡宗全,聂海宽,等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733.
HE Z L, HU Z Q, NIE H K, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J].Natural Gas Geoscience, 2017, 28(5): 724-733.
5 张成林, 张鉴, 李武广,等. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
ZHANG C L, ZHANG J, LI W G, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi Formations in Dazu area, western Chongqing[J]. Natural Gas Geoscience, 2019, 30(12): 1794-1804.
6 王玉满,黄金亮,王淑芳,等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016, 27(3): 423-432.
WANG Y M, HUANG J L, WANG S F, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 423-432.
7 孟宪武, 田景春, 张翔, 等. 川西南井研地区筇竹寺组页岩气特征[J]. 矿物岩石, 2014, 34(2): 96-105.
MENG X W, TIAN J C, ZHANG X, et al. Characteristics of shale gas of the Qiongzhusi Formation in Jingyan area of southwest Sichuan[J]. Journal of Mineralogy and Petrology, 2014, 34(2):96-105.
8 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源—盖控藏”富集[J]. 石油学报, 2016, 37(5): 557-571.
NIE H K, JIN Z J, BIAN R K, et al. “Source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571.
9 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学, 2015, 26(5): 986-1000.
LI C W,TAO S Z,DONG D Z,et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015, 26(5): 986-1000.
10 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226.
CHEN X H, WEI K, ZHANG B M, et al. Main geological factors controlling the distribution and development of shale gas in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns[J]. Geology in China, 2018, 45(2) :207-226.
11 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447.
ZHAI G Y, BAO S J, WANG Y F, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4): 441-447.
12 张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.
ZHANG J F, XU H, ZHOU Z, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899.
13 张文荣, 熊洁明, 文可东. 中扬子地区南、北对冲式逆掩推覆构造形成演化[J]. 石油勘探与开发, 1992, 19(2): 1-9.
ZHANG W R, XIONG J M, WEN K D. The formation and evolution mechanism of the nappe tectonics with north-south ramps in the middle Yangtze area and its geologic condition related to oil and gas generation[J]. Petroleum Exploration and Development, 1992, 19(2): 1-9.
14 戴少武,刘少峰,程顺有. 江汉及邻区盆山耦合关系与油气[M]. 西安: 西北大学出版社, 2000:68-81.
DAI S W, LIU S F,CHENG S Y. Coupling Relation Between Basin and Mountain and Oil and Gas in Jianghan Basin and Its Adjacent Regions[M]. Xi’an: Northwest University Press, 2000: 68-81.
15 郭战峰,刘新民,盛贤才,等. 东秦岭—大别造山带南侧加里东期古隆起特征及油气地质意义[J]. 石油实验地质, 2009, 31(2): 181-185.
GUO Z F, LIU X M, SHENG X C, et al. Petroleum geological significance and characteristics of Caledonian paleouplift in the southern margin of east Qinling and Dabie orogenic belt[J]. Petroleum Geology & Experiment, 2009, 31(2):181-185.
16 李忠雄,陆永潮,王剑,等. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报, 2004, 6(2): 151-162.
LI Z X, LU Y C, WANG J, et al. Sedimentary characteristics and lithofacies palaeogeography of the Late Sinian and Early Cambrian in middle Yangtze region[J]. Journal of Palaeogeography, 2004, 6(2): 151-162.
17 刘新民,付宜兴,郭战峰,等. 中扬子区南华纪以来盆地演化与油气响应特征[J]. 石油实验地质, 2009, 31(2): 160-165.
LIU X M, FU Y X, GUO Z F, et al. Characteristics of basin evolution and hydrocarbon response in middle Yangtze region since Nanhua period[J]. Petroleum Geology & Experiment, 2009, 31(2): 160-165.
18 余武,沈传波,杨超群. 秭归盆地中新生代构造—热演化的裂变径迹约束[J]. 地学前缘, 2017, 24(3): 116-126.
YU W, SHEN C B, YANG C Q. Constraints of fission track dating on the Mesozoic-Cenozoic tectonic-thermal evolution of the Zigui Basin[J]. Earth Science Frontiers,2017, 24(3): 116-126.
19 左文超. 论印支运动在湖北境内表现特点——兼论省内盖层褶皱形成主要时期[J]. 湖北地矿, 2000, 14(3-4): 16-22.
ZUO W C. Expression characteristics of Indosinian movement in Hubei: Concurrently discussing the major period forming the mantle folds in this area[J]. Hubei Geology & Mineral Resources, 2000, 14(3-4): 16-22.
20 何治亮,汪新伟,李双建,等. 中上扬子地区燕山运动及其对油气保存的影响[J]. 石油实验地质, 2011, 33(1): 1-11.
HE Z L, WANG X W, LI S J, et al. Yanshan movement and its influence on petroleum preservation in middle-upper Yangtze region[J]. Petroleum Geology & Experiment, 2011, 33(1): 1-11.
21 赵小明,童金南,姚华舟,等. 三峡地区印支运动的沉积响应[J]. 古地理学报, 2010, 12(2): 177-184.
ZHAO X M, TONG J N, YAO H Z, et al. Sedimentary response to the Indosinian movement in Three Gorges area[J]. Journal of Palaeogeography, 2010, 12(2):177-184.
22 付宜兴,张萍,李志祥,等. 中扬子区构造特征及勘探方向建议[J]. 大地构造与成矿学, 2007, 31(3): 308-314.
FU Y X, ZHANG P, LI Z X, et al. The tectonic characteristics and their significance for hydrocarbon exploration in mid-Yangtze area[J]. Geotectonica et Metallogenia, 2007, 31(3): 308-314.
23 XU Z Y, JIANG S, YAO G S, et al. Tectonic and depositional setting of the Lower Cambrian and Lower Silurian marine shales in the Yangtze Platform, South China: Implications for shale gas exploration and production[J].Journal of Asian Earth Sciences, 2019, 170: 1-19.
24 沈传波,梅廉夫,刘昭茜,等. 黄陵隆起中—新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 2009, 29(2): 54-60.
SHEN C B, MEI L F, LIU Z Q, et al. Apatite and zircon fission track data, evidences for the Mesozoic-Cenozoic uplift of Huangling dome, central China[J]. Journal of Mineralogy and Petrology, 2009, 29(2): 54-60.
25 XU C H, ZHOU Z Y, CHANG Y, et al. Genesis of daba arcuate structural belt related to adjacent basement upheavals: Constraints from fission-track and (U-Th)/He thermochronology[J]. Science China Earth Sciences, 2010, 53(11): 1634-1646.
26 李天义,何生,何治亮,等. 中扬子地区当阳复向斜中生代以来的构造抬升和热史重建[J].石油学报,2012,33(2):213-224.
LI T Y, HE S, HE Z L, et al. Reconstruction of tectonic uplift and thermal history since Mesozoic in the Dangyang syn⁃clinorium of the central Yangtze area[J]. Acta Petrolei Sinica, 2012, 33(2): 213-224.
27 袁玉松,孙冬胜,周雁,等. 中上扬子地区印支期以来抬升剥蚀时限的确定[J]. 地球物理学报, 2010, 53(2): 362-369.
YUAN Y S, SUN D S, ZHOU Y, et al. Determination of onset of uplifting for the Mid-Upper Yangtze area after Indosinian event[J]. Chinese Journal of Geophys, 2010, 53(2): 362-369.
28 邓铭哲. 黄陵背斜及邻区构造建模[D]. 北京:中国地质大学(北京),2018:137-140.
DENG M Z. Structural Modeling of the Huangling Anticline and Its Peripheral Structural Belt[D]. Beijing: China University of Geoscience (Beijing), 2018:137-140.
29 王军,褚杨,林伟,等. 黄陵背斜的构造几何形态及其成因探讨[J]. 地质科学, 2010, 45(3): 615-625.
WANG J, CHU Y, LIN W, et al. Structural geometry and the origin of the Huangling anticline[J]. Chinese Journal of Geology, 2010, 45(3): 615-625.
30 凌文黎,高山,程建萍,等. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U—Pb同位素年代学的约束[J]. 岩石学报, 2006, 22(2): 387-396.
LING W L, GAO S, CHENG J P, et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes[J]. Acta Petrologica Sinica, 2006, 22(2): 387-396.
31 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO X S. Rules of two-factor enrichiment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
32 JI W B, LIN W, FAURE M, et al. Origin and tectonic significance of the Huangling massif within the Yangtze craton, south China[J]. Journal of Asian Earth Sciences, 2014, 86(2): 59-75.
33 李贤庆,王元,郭曼,等. 川南地区下古生界页岩气储层孔隙特征研究[J]. 天然气地球科学, 2015, 26(8): 1464-1471.
LI X Q,WANG Y,GUO M, et al. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J]. Natural Gas Geoscience, 2015,26(8):1464-1471.
34 JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
35 朱清波,杨坤光,程万强.江南隆起带北缘新生代构造演化的石英ESR年代学研究[J].现代地质,2011,25(1):31-38.
ZHU Q B, YANG K G, CHENG W Q. Structural evolution of northern Jiangnan uplift: Evidence from ESR dating[J]. Geoscience, 2011, 25(1):31-38.
36 邓铭哲,何登发. 当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义[J]. 成都理工大学学报:自然科学版, 2018, 45(4): 487-500.
DENG M Z, HE D F. The geological structure in the Dangyang area and its significance to the shale gas exploration in Yichang area, China[J]. Journal of Chengdu university of technology,Science & Technology Edition, 2018, 45(4): 487-500.
37 赵宗举,朱琰,邓红婴,等. 中国南方古隆起对中、古生界原生油气藏的控制作用[J]. 石油实验地质, 2003, 25(1): 10-17.
ZHAO Z J, ZHU Y, DENG H Y, et al. Control of paleouplifts to the Meso-Paleozoic primary oil and gas pools in the south of China[J]. Experimental Petroleum Geology, 2003, 25(1): 10-17.
38 李双建, 高波, 沃玉进, 等. 中国南方海相油气藏破坏类型及其时空分布[J]. 石油实验地质, 2011, 33(1): 43-49.
LI S J, GAO B, WO Y J, et al. Destruction types and temporal-spatial distribution of marine hydrocarbon reservoirs in south China[J]. Petroleum Geology & Experiment, 2011, 33(1): 43-49.
39 李昌鸿,刘新民,付宜兴,等. 江汉平原区中、古生界构造特征及演化[J]. 地质科技情报, 2008, 27(2): 34-38.
LI C H, LIU X M, FU Y X, et al. Tectonic features and evolution of Mesozoic-Paleozoic in Jianghan plain region[J].Geolo-gical Science and Technology Information,2008,27(2):34-38.
40 XU G S, LIANG J J, GONG D Y, et al. Fluid migration paths in the marine strata of typical structures in the western Hubei-eastern Chongqing area, China[J]. Petroleum Science, 2013, 10(1): 1-18.
41 罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2): 154-164.
LUO S Y, HE S, WANG H. Review on fault internal structure and the influence on fault sealing ability[J]. Advance in Earth Sciences, 2012, 27(2): 154-164.
42 GALE J F W, HOLDER J. Natural Fractures in the Barnett shale: Constraints on Spatial Organization and Tensile Streng-th with Implications for Hydraulic Fracture Treatment in Shale-Gas Reservoirs[C]. 42nd U.S. Rock Mechanics-2nd U.S.-Canada Rock Mechanics Symposium. San Francisco: American Rock Mechanics Association, 2008.
43 刘力, 何生, 翟刚毅, 等. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存[J]. 地球科学, 2019, 44(11): 3583-3597.
LIU L, HE S, ZHAI G Y, et al. Diagenetic environment evolution of fracture veins of shale core in second member of Niutitang Formation in southern limb of Huangling anticline and its connection with shale gas preservation[J]. Earth Science, 2019, 44(11): 3583-3597.
[1] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[2] Ying-hui CAO,Hong-hui LI,Shan WANG,Jing-shun QI,Jin-you HE,Hong-jiang WANG. An inquiry into the sedimentary model of Upper Sinian in Tadong Uplift of Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1099-1110.
[3] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[4] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[5] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[6] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[7] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[8] Min ZHANG, Zheng-hong ZHANG, Yi-xue XIONG, Yong-quan CHEN, Xiao-xue WANG, Hao HE, Qian KANG, Yuan MA, Dong-po SU. Formation mechanism and distribution of carbonate reservoirs in the 3rd-4th members of Ordovician Yingshan Formation on the northern slope of Tazhong Uplift [J]. Natural Gas Geoscience, 2020, 31(5): 636-646.
[9] De-bo MA, Wen-juan CUI, Xiao-wan TAO, Hong-kui DONG, Zhao-hui XU, Ting-ting LI, Xiu-yan CHEN. Structural characteristics and evolution process of faults in the Lunnan low uplift, Tabei Uplift in the Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 647-657.
[10] Lin-xian CHI, Zhi-yao ZHANG, Guang-you ZHU, Hai-ping HUANG, Jian-fa HAN, Jing-fei LI. The molecular geochemical evidence of two accumulation stages of the Silurian reservoirs in Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 471-482.
[11] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[12] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[13] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[14] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[15] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Lin, WEI Guo-Qi, LI Xi-Zhe, HONG Ze-Cheng, XIAO Xian-Ming. THE EVOLUTION HISTORY OF SINIAN-LOWER PALAEOZIC HIG/OVER MATURE SOURCE ROCK IN SICHUAN BASIN[J]. Natural Gas Geoscience, 2007, 18(5): 726 -731 .
[2] . Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage:Taking Longmaxi Formation in Well JY1 as an Example[J]. Natural Gas Geoscience, 2013, 24(4): 643 -651 .
[3] ZHOU Qing-hua,SONG Ning,WANG Cheng-zhang,LI Bo,WANG Xian-de,PENG Chuan-sheng,REN Yu-xiu. Geological Evaluation and Exploration Prospect of Huayuan Shale Gas Block in Hunan Province[J]. Natural Gas Geoscience, 2014, 25(1): 130 -140 .
[4] LENG Ji-gao,HAN Jian-hui,LI Fei,LI Peng,MENG Lan. Exploration Potential of Shale Gas in Huayuan Block,Northwest Hunan Province[J]. Natural Gas Geoscience, 2014, 25(4): 624 -631 .
[5] LIN Tuo,ZHANG Jin-chuan,BAO Shu-jing,YANG Sheng-yu,LI Bo,HE Wei. The Optimum Selecting of Shale Gas Well Location and Gas Content of Lower Cambrian,Northwest Hunan:A Case Study of Well Changye[J]. Natural Gas Geoscience, 2015, 26(2): 312 -319 .
[6] MENG Qiang,WANG Xiao-feng,WANG Xiang-zeng,ZHANG Li-xia,JIANG Cheng-fu,LI Xiao-fu,SHI Bao-guang. Variation of Carbon Isotopic Composition of Alkanes During the Shale Gas Desorption Process and Its Geological Significance: A Case Study of Chang7 Shale ofYanchang Formation in Yishan Slope Southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(2): 333 -340 .
[7] CHEN Shang-bin,QIN Yong,WANG Yang,ZHANG Han,ZUO Zhao-xi. Pore Structure and Heterogeneity of Marine Shales in the Middle-Upper Yangtze[J]. Natural Gas Geoscience, 2015, 26(8): 1455 -1463 .
[8] CHENG Ling-yun,YONG Zi-quan,WANG Tian-yi,LAN Ning,YU Jun-you,DEN Bin. Evaluation Index of Shale Gas Preservation for Niutitang Formation in the Strong Transformation Zone[J]. Natural Gas Geoscience, 2015, 26(12): 2408 -2416 .
[9] Liang Feng,Zhu Yan-ming,Qi Lin,Wang Hong-yan,Bai Wen-hua,Ma Chao,Zhang Qin,Cui Hui-ying,Wu Jin. Accumulation condition and gas content influence factors of Niutitang Formation organic-rich shale in Changde area,Hunan Province[J]. Natural Gas Geoscience, 2016, 27(1): 180 -188 .
[10] Zhang Chong,Zhang Chaomo,Zhang Zhansong,Qin Ruibao,Yu Jie. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016, 27(2): 352 -358 .