Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (9): 1271-1284.doi: 10.11764/j.issn.1672-1926.2020.04.021

Previous Articles     Next Articles

The effect of particle size on low pressure gas adsorption experiments for high-maturity shale

Teng-fei LI1(),Hui TIAN1(),Xian-ming XIAO2,Peng CHENG1,Xing WANG1,3,Yao-wen WU1,3,Zi-jin WU1,3   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    2.China University of Geosciences, Beijing 100083, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-02-25 Revised:2020-04-26 Online:2020-09-10 Published:2020-09-04
  • Contact: Hui TIAN E-mail:litengfei@gig.ac.cn;tianhui@gig.ac.cn

Abstract:

To evaluate the effect of particle size on the determination of shale physical parameters and explore the suitable particle size range for such analysis, three samples with different TOC content from the Lower Cambrian Niutitang Formation in southeast Chongqing area were investigated. Combined with low pressure N2/CO2 adsorption experiments, organic petrology, laser Raman spectroscopy and XRD mineralogical results, the influence of crushing and sieving on the measurement of mineral composition, specific surface area and pore size distribution were discussed. The results are as follows:(1) Pores within organic matter and intergranular of clay minerals are the main types in shale samples, and the development of organic pores are heterogeneous;(2) The procedure of sieving can cause irregular differentiation to mineral composition of shale samples;(3) The results of low pressure N2 adsorption experiment indicate that when the particle size is less than 0.425 mm(>40 Mesh), smaller particle size can increase the specific surface area and obviously affect pore volume of mesopores and macropores; However, when the particle size is greater than 2 mm(<10 Mesh), further increase in particle size will significantly increase the experimental time; (4) Particle size has no distinct impact on the micropores in shales. Combining the experimental reliability and time efficiency as well as the heterogeneous nature of shale samples, particle sizes between 10-40 Mesh are recommended for the experimental analysis of shale physical parameters.

Key words: Shale gas, Particle size, Mineral composition, Low pressure N2 and CO2 adsorptionFoundation items:The China National Science Fund for Distinguished Young Scholars (Grant No. 41925014), The Joint Fund of National Natural Science Foundation of China (Grant No. U1810201).

CLC Number: 

  • TE122.2

Fig.1

Schematic diagram of sampling location(modified from Ref.[39])"

Table 1

Basic geochemical characteristics of shale samples"

样品 编号层位eqRO/%TOC/%粒径 /目矿物组成/%
石英长石伊利石黄铁矿
JG-2-1?1n3.234.001~557.212.930-
JG-2-25~1044.611.244.2-
JG-2-310~2048.912.138.9-
JG-2-420~4049.811.239-
JG-2-540~6050.81039.2-
JG-2-660~8053.711.734.6-
JG-2-780~1004411.744.3-
JG-2-8<10050.110.939-
JG-8-2?1n3.169.025~10669.724.3-
JG-8-310~2062.69.626.21.6
JG-8-420~406010.929.1-
JG-8-540~6064.512.622.8-
JG-8-660~80649.526.5-
JG-8-780~100678.224.8-
JG-8-8<10059.110.230.7-
JG-11-1?1n3.337.371~5----
JG-11-25~10----
JG-11-310~20----
JG-11-420~40----
JG-11-540~60----
JG-11-660~80----
JG-11-780~100----
JG-11-8<100----

Fig.2

Raman spectrum of bitumen in shale samples"

Fig.3

Field emission scanning electron microscope (FE-SEM) images of shale samples"

Fig.4

Mineral composition of JG-2 and JG-8 series samples"

Fig.5

Low pressure N2 adsorption and desorption isotherms for samples with particle size between 20-40 mesh and the relationship between TOC and specific surface area"

Fig.6

Local low pressure N2 adsorption isotherms of samples with different particle sizes"

Table 2

Parameters of low pressure N2 adsorption experiment results"

样品编号TOC/%单点吸附总孔体积 /(cm3 /100 g)吸附实验时间 /hBET 比表面积 /(m2/g)
JG-2-14.003.1723.436.28
JG-2-23.2117.326.11
JG-2-33.2812.976.13
JG-2-43.3412.186.20
JG-2-53.6612.536.71
JG-2-63.8112.607.08
JG-2-73.9212.607.18
JG-2-84.3013.188.05
JG-8-29.023.1853.5328.85
JG-8-33.2438.1328.45
JG-8-43.4138.8329.02
JG-8-53.5638.2229.48
JG-8-63.9037.0330.51
JG-8-74.1436.0531.86
JG-8-84.9135.4832.70
JG-11-17.372.09113.1524.37
JG-11-22.2368.3324.70
JG-11-32.3345.9224.28
JG-11-42.4542.1724.57
JG-11-52.5539.8324.43
JG-11-62.8339.3725.21
JG-11-73.0339.4025.27
JG-11-83.8738.3826.43

Fig.7

Plots showing the relationships between particle size and BET specific surface area"

Fig.8

Plots showing the relationships between particle size and single point adsorption total pore volume of pores"

Fig.9

Pore volume distribution with pore size derived from the N2 adsorption branch of isotherms using BJH model"

Fig.10

The completion time of low pressure N2 adsorption experiment for shale samples with different particle sizes"

Fig.11

Low pressure CO2 adsorption isotherms for shale samples with different particle sizes"

Fig.12

Plots showing micropore volume derived from the CO2 adsorption isotherms for shale samples with different particle sizes"

1 TIAN H, LI T F, ZHANG T W, et al. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin,southwest China: Experimental results and geological implications[J]. International Journal of Coal Geology, 2016, 156: 36-49.
2 AMBROSE R J, HARTMAN R C, MERY D C, et al. Shale gas-in-place calculations part I: New pore-scale considerations[J]. SPE Journal, 2012, 17(1): 219-229.
3 HARTMAN R C, AMBROSE R J, AKKUTLU I Y, et al. Shale gas-in-place calculations part II-multicomponent gas adsorption effects[C].Woodlands, Texas, USA. North American Unconventional Gas Conference and Exhibition, Society of Petroleum Engineers, 2011.
4 CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
5 KUILA U, PRASAD M. Specific surface area and pore‐size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362.
6 LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
7 MASTALERZ M,SCHIMMELMANN A,DROBBIAK A, et al. Porosity of Devonian and Mississippian new Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
8 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
9 SCHIEBER J. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic[C]. SPE Unconventional Gas Conference, Society of Petroleum Engineers, 2010.
10 LI C X, OSTADHASSAN M, KONG L Y. Nanochemo-mechanical Characterization of Organic Shale Through AFM and EDS[C].Houstun, Texas,2017 SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, 2017.
11 JAVADPOUR F, FARSHI M M, AMREIN M. Atomic-force microscopy:A new tool for gas-shale characterization[J].Journal of Canadian Petroleum Technology,2012,51(4): 236-243.
12 LEWIS R, SINGER P, JIANG T M, et al. NMR T2 Distributions in the Eagle Ford shale: Reflections on Pore Size[C]. Woodlands, Texas, USA.SPE Unconventional Resources Conference-USA. Society of Petroleum Engineers, 2013.
13 CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion [J]. Fuel, 2013, 103: 606-616.
14 ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids(technical report)[J].Pure and Applied Chemistry,1994,66(8): 1739-1758.
15 TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
16 KUILA U, PRASAD M. Application of nitrogen gas-adsorption technique for characterization of pore structure of mudrocks[J]. The Leading Edge, 2013, 32(12): 1478-1485.
17 BLACK D J. Factors Affecting The Drainage of Gas From Coal and Methods to Improve Drainage Effectiveness[D].Wollongon Australia: University of Wollongong, 2011.
18 HODSON M E. Micropore surface area variation with grain size in unweathered alkali feldspars: Implications for surface roughness and dissolution studies[J]. Geochimica et Cosmochimica Acta, 1998, 62(21-22): 3429-3435.
19 CHEN Y Y, WEI L, MASTALERZ M, et al. The effect of analytical particle size on gas adsorption porosimetry of shale [J]. International Journal of Coal Geology, 2015, 138: 103-112.
20 WEI M M, XIONG Y Q, ZHANG L, et al. The effect of sample particle size on the determination of pore structure parameters in shales[J]. International Journal of Coal Geology, 2016, 163: 177-185.
21 LI J, ZHOU S X, FU D L, et al. Changes in the pore characteristics of shale during comminution[J]. Energy Exploration & Exploitation, 2016, 34(5): 676-688.
22 HAN H, CAO Y, CHEN S J, et al. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China[J]. Fuel, 2016, 186: 750-757.
23 MASTALERZ M, HAMPTON L B, DROBNIAK A, et al. Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale[J]. International Journal of Coal Geology, 2017, 178: 122-131.
24 李勃, 陈方文, 肖佃师, 等. 颗粒粒径对低温氮吸附实验的影响——以五峰组—龙马溪组海相含气页岩为例[J]. 中国矿业大学学报, 2019, 48(2): 395-404.
LI B, CHEN F W, XIAO D S, et al. Effect of particle size on the experiment of low temperature nitrogen adsorption: A case study of marine gas shale in Wufeng-Longmaxi Formation[J]. Journal of China University of Mining & Technology, 2019, 48(2): 395-404.
25 CLOKE M, LESTER M, BELGHAZI A, Characterisation of the properties of size fractions from ten world coals and their chars produced in a drop-tube furnace[J]. Fuel, 2002, 81(5): 699-708.
26 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2016, 42(6) : 753-767.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 753-767.
27 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二) [J]. 石油勘探与开发, 2015, 43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
28 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16.
LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
29 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1): 1-15.
LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 2): Geochemical characteristics of four regional marine source rocks, South China[J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15.
30 董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景 [J]. 石油学报, 2012, 33(S1): 107-114.
DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1): 107-114.
31 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741.
CHENG P, XIAO X M. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741.
32 PAN L, XIAO X M, TIAN H, et al. Geological models of gas in place of the Longmaxi shale in southeast Chongqing, South China[J]. Marine and Petroleum Geology, 2016, 73: 433-444.
33 高之业, 范毓鹏, 胡钦红, 等.川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 2020, 5(1): 1-16.
GAO Z Y, FAN Y P, HU Q H, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J].Petroleum Science Bulletin,2020,5(1): 1-16.
34 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40(6): 1215-1225.
XIAO D S, ZHAO R W, YANG X, et al. Characterization, classification and contribution of marine shale gas reservoirs [J]. Oil & Gas Geology, 2019, 40(6): 1215-1225.
35 李文镖, 卢双舫, 李俊乾, 等. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38.
LI W B, LU S F, LI J Q, et al. The coupling relationship between material composition and pore microstructure of southern China marine shale[J]. Natural Gas Geoscience, 2019, 30(1): 27-38.
36 杨振恒, 韩志艳, 腾格尔, 等.四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J].天然气地球科学,2019,30(7):1037-1044.
YANG Z H, HAN Z Y, TENGER, et al. Characteristics of Wufeng-Longmaxi Formations shale sweet layer: Case study of Weiyuan-Rongchang block of SINOPEC[J]. Natural Gas Geoscience, 2019, 30(7): 1037-1044.
37 曾维特, 丁文龙, 张金川, 等. 渝东南—黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析[J]. 地学前缘, 2019, 26(3): 220-235.
ZENG W T, DING W L, ZHANG J C, et al. Analyses of the characteristics and main controlling factors for the micro/nanopores in Niutitang shale from China’s southeastern Chongqing and northern Guizhou regions[J]. Earth Science Frontiers, 2019, 26(3): 220-235.
38 焦伟伟, 方光建, 汪生秀, 等. 渝东南地区下古生界页岩含气性差异关键控制因素[J].煤炭学报,2019, 44(6): 1786-1794.
JIAO W W, FANG G J, WANG S X, et al. Key control factor for the gas-bearing properties difference of Lower Paleozoic shale in southeast Chongqing[J]. Journal of China Coal Society, 2019, 44(6): 1786-1794.
39 邱琼. 渝东南牛蹄塘组富有机质页岩沉积与储层特征[D]. 成都: 成都理工大学, 2017.
QIU Q. Characteristics of Organic Matter Shale Deposit and Reservoir in the Niutitang Formation, Southeast Chongqing [D]. Chengdu: Chengdu University of Technology, 2017.
40 TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
41 PAN L, XIAO X M, TIAN H, et al. A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China[J]. International Journal of Coal Geology, 2015, 146: 68-78.
42 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13):1228-1241.
43 王茂林,肖贤明,魏强,等.页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J].天然气地球科学,2015,26(9): 1712-1718.
WANG M L, XIAO X M, WEI Q, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718.
44 BEYSSAC O, GOFFE B, PETITE J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276.
45 房俊卓, 徐崇福. 三种X-射线物相定量分析方法对比研究[J]. 煤炭转化, 2010, 33(2): 88-91.
FANG J Z,XU C F. Study on three kinds of XRD quantitative analysis methods[J]. Coal Conversion, 2010, 33(2): 88-91.
46 肖贤明, 王茂林, 魏强, 等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学, 2015, 26(8): 1433-1445.
XIAO X M, WANG M L, WEI Q, et al. Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
47 王思远,李俊乾,卢双舫,等.渝东南地区海相页岩有机质孔隙发育特征[J].地球科学与环境学报,2019, 41(6):721-733.
WANG S Y, LI J Q, LU S F, et al. Development characteristics of organic matter pores of marine shale in the southeastern Chongqing, China[J]. Journal of Earth Sciences and Environment, 2019, 41(6): 721-733.
48 SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of Surface-area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
49 KUILA U, MCCARTY D K. DERKOWSKI A,et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel, 2014, 135: 359-373.
[1] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[2] Lu CHEN,Zhi-Ming HU,Wei XIONG,Xiang-Gang DUAN,Jin CHANG. Diffusion experiment of shale gas and mathematical model [J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293.
[3] Qiang NIU,Huan-xu ZHANG,Di ZHU,Zhi-yao XU,Yun-feng YANG,An-xu DING,He-qun GAO,Li-sheng ZHANG. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1294-1305.
[4] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[5] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[6] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[7] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[8] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[9] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[10] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[11] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
[12] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[13] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[14] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[15] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[2] DU Le-tian. INTRODUCTION AND ANALYSIS OF FOREIGN NATURAL GAS GEOSCIENCE STUDIES BASED ON SO KOLOV'S DATA[J]. Natural Gas Geoscience, 2007, 18(1): 1 -18 .
[3] . THE RESEARCH OF THE ORIGIN MECHANISM OF MARINE GAS HYDRATE[J]. Natural Gas Geoscience, 2004, 15(5): 524 -530 .
[4] . [J]. Natural Gas Geoscience, 1997, 8(5-6): 13 -18 .
[5] . EXPERIMENTAL INVESTIGATION ON PHYSICAL SIMULATION OF GAS DISSOLVED IN WATER DURING MIGRATION[J]. Natural Gas Geoscience, 2004, 15(1): 32 -36 .
[6] . [J]. Natural Gas Geoscience, 1997, 8(1): 16 -22 .
[7] . THE APPLICATION OF C AND O ISOTOPE ANALYSE IN SEDIMENT ENVIRONMENT OF QIANJIANG SALINE LAKE[J]. Natural Gas Geoscience, 2004, 15(3): 320 -322 .
[8] YANG Zhan-long,GUO Jing-yi,CHEN Qi-lin,HUANG Yun-feng. MULTI-PARAMETERS OF SEISMIC AND SUBTLE RESERVOIR EXPLORATION——TAKE THE XN REGION OF JH BASIN AS AN EXAMPLE[J]. Natural Gas Geoscience, 2004, 15(6): 628 -632 .
[9] ZHANG Ji;CHEN Feng-xi;LU Tao;WANG Dong-xu;WANG Yong;LIU Hai-feng; WANG Cai-li. Horizontal Well Geosteering Technology and Its Application in Development of Jingbian Gasfield[J]. Natural Gas Geoscience, 2008, 19(1): 137 -140 .
[10] HONG Feng;SONG Yan;LIU Shao-bo;ZHAO Meng-jun;QIN Sheng-fei;FU guo-you. A STUDY ON THE SOURCE- RESERVOIR-SEAL ASSOCIATIONS AND MATCHING OF HYDROCARBON ACCUMULATION FACTORS IN THE FORELAND BASINS IN CENTRAL-WESTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 27 -31 .