Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (6): 773-785.doi: 10.11764/j.issn.1672-1926.2020.03.007

Previous Articles     Next Articles

Reservoir characteristic and gas exploration potential in Cambrian Xixiangchi Formation of Sichuan Basin

Shu-yuan SHI1(),Tong-shan WANG1,Wei LIU1,Hua JIANG1,Qiu-fen LI1,Xin LIU2,Yi-yang ZENG2,Xiang ZOU3,Li HU3   

  1. 1.Research Institution of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
    2.Research Institute of Exploration and Development, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610000, China
    3.Shunan Gasfield, Southwest Oil & Gas Field Company, PetroChina, Luzhou 646000, China
  • Received:2019-02-17 Revised:2020-03-18 Online:2020-06-10 Published:2020-06-17
  • Supported by:
    The China National Science & Technology Major Project(2016 ZX05004-001)

Abstract:

The content of gypsum salt rock in Cambrian drilling in Sichuan Basin is counted. The distribution of gypsum salt rock is characterized by combining logging and seismic data. The Cambrian developed area of Sichuan Basin is divided into the undeveloped area of gypsum salt rock mainly in the ancient uplift and slope area of Leshan-Longnusi and the developing area of gypsum salt rock mainly in the area of Chuandong-Shunan. The observation and description of core and thin-section reveal that the main types of reservoir rocks are dolograinstone and dolopackstone. The reservoir space includes three categories and nine subcategories: pore type, cave type and fracture type, and the cavern type is the main type. Physical properties test show that the porosity of core is below 2% and the reservoir is above 3% in non-gypsum developed area. The core porosity is 3.5% on average and up to 5% in the development area of gypsum salt rock. Microfacies are the basis of reservoir development in the Xixiangchi Formation, and grainstone beach is the main microfacies type. The atmospheric fresh water karst is the main controlling factor for the formation of high quality reservoir in undeveloped area of gypsum salt rock. The superimposition of burial dissolution is the key to the formation of high quality reservoir in developed area of gypsum salt rock. The potential of oil and gas exploration in Xixiangchi Formation is prospected. The paleo uplift and slope area of undeveloped gypsum salt rock should be based on searching for high-quality beach reservoir influenced by the karst of atmospheric fresh water. It is an important field of exploration breakthrough to find buried dissolved and superimposed reservoir in the east-shunan area of Cambrian gypsum salt rock.

Key words: Sichuan Basin, Cambrian, Xixiangchi Formation, Grainstone beach, Paleokarst, Gypsum-salt rock

CLC Number: 

  • TE122.1

Fig.1

Gypsum-salt rock thickness distribution of Cambrian in Sichuan Basin(modified from Ref.[20])"

Table 1

Stratigraphic subdivision and comparison of the Cambrian in Sichuan Basin and its margin areas"

川西—川中小区雷波小区龙门山小区川东—渝南小区城口—巫溪小区本文

上统凤山阶洗象池组二道水组娄山关群三游洞组洗象池组
长山阶
固山阶
中统张夏阶西王庙组覃家庙组
徐庄阶
毛庄阶陡坡寺组陡坡寺组高台组陡坡寺组
下统龙王庙阶龙王庙组龙王庙组清虚洞组石龙洞组龙王庙组
沧浪铺阶沧浪铺组沧浪铺组金顶山组天河板组沧浪铺组
磨刀垭组明心寺组石牌组
筇竹寺阶笻竹寺组笻竹寺组长江沟组牛蹄塘组水井沱组笻竹寺组
梅树村阶

Fig.2

Distribution of oil and gas exploration field in Cambrian Xixiangchi Formation, Sichuan Basin"

Fig. 3

Petrologic character on Cambrian Xixiangchi Formation, Sichuan Basin"

Table 2

Reservoir space type and their distribution in Cambrian Xixiangchi Formation, Sichuan Basin"

类型发育特征分布取心井及对应分布频率
孔隙原生孔晶间孔在自形晶粒白云石间可见,可为沥青充填螺观1(高)、宝龙1(中)、广探2(高)
粒间孔颗粒间孔隙,见大量沥青充填广探2(中)、合12(中)、宝龙1(中)
藻格架孔同沉积期间形成,多数孔被白云石充填,也可见沥青充填广探2(中)、安平1(低)、合12(低)
次生孔晶间溶孔在自形晶粒白云石间及靠裂缝处可见,见沥青充填螺观1(高)、广探2(高)、安平1(中)
粒间溶孔在亮晶砂屑、砂砾屑白云岩、鲕粒云岩中可见广探2(中)、安平1(中)
溶洞溶洞直径大于2 mm的溶蚀孔,有少量后期被白云石或者石英半充填广探2(高)、五科1(中)、螺观1(中)、威寒101(高)、座3(中)
裂缝构造缝多平直,具多期:早期缝平直具沥青充填螺观1(中)、威寒101(中)、五科1(中)
构造溶蚀缝沿构造缝扩溶而成五科1(中)、螺观1(中)、威寒101(中)、高科1(中)
缝合线压溶作用形成,常见大量沥青和黄铁矿宝龙1(中)、螺观1(中)

Fig.4

Reservoir space type in Cambrian Xixiangchi Formation, Sichuan Basin"

Fig. 5

Reservoir physical properties distribution in Cambrian Xixiangchi Formation, Sichuan Basin"

Fig.6

The relationship between lithology, sedimentary microfacies and physical properties of coring sections of Wells GT2 and AP1"

Fig.7

Dolostone and its fillings carbon and oxygen isoto-pes characteristic in Cambrian Xixiangchi Formation, Sichuan Basin"

Fig.8

Burial history curve(c), inclusion homogenization temperature and salinity crossplot(a), and salinity histogram(b) in Xixiangchi Formation, Sichuan Basin"

1 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.
DU J H, ZOU C N, XU C C, et al. Theoretical and technical innovations in strategic discovery of huge gas fields in Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.
2 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential, prediction and discovery of Sinian-Cambrian super-giant gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
3 徐世琦, 代宗仰, 蒋小光, 等. 古隆起区带寒武系洗象池群成藏条件与勘探前景分析[J]. 天然气勘探与开发, 2006, 29(4): 4-8.
XU S Q, DAI Z Y, JIANG X G, et al. Oil and gas exploration prospects of Cambrian Xixiangchi member in palaeo-uplift zone[J]. Natural Gas Exploration and Development, 2006, 29(4): 4-8.
4 魏国齐, 焦贵浩, 杨威, 等. 四川盆地震旦系—下古生界天然气成藏条件与勘探前景[J]. 天然气工业, 2010, 30(12): 5-9.
WEI G Q, JIAO G H, YANG W, et al. Hydrocarbon pooling conditions and exploration potential of Sinian Lower Paleozoic gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2010, 30(12): 5-9.
5 冉隆辉, 谢姚祥, 戴弹申. 四川盆地东南部寒武系含气前景新认识 [J]. 天然气工业, 2008, 28(5): 5-9.
RAN L H, XIE Y X, DAI T S. New knowledge of gas bearing potential in Cambrian system of southeast Sichuan Basin[J]. Natural Gas Industry, 2008, 28(5): 5-9.
6 戴鸿鸣, 王顺玉, 王海清. 四川盆地寒武系-震旦系含气系统成藏特征及有利勘探区块[J]. 石油勘探与开发, 1999, 26(5): 16-20.
DAI H M, WANG S Y, WANG H Q. Formation characteristics of natural gas reservoirs and favorable exploration areas in Sinian-Cambrian petroleum system of Sichuan Basin[J]. Petroleum Exploration and Development, 1999, 26(5): 16-20.
7 王佳, 刘树根, 黄文明, 等. 四川盆地南部地区寒武系油气勘探前景[J]. 地质科技情报, 2011, 30(5): 74-82.
WANG J, LIU S G, HUANG W M, et al. Oil and gas exploration prospects of Cambrian in southern Sichuan Basin[J]. Geological Science and Technology Information,2011,30(5): 74-82.
8 黄文明, 刘树根, 王国芝, 等. 四川盆地下古生界油气地质条件及气藏特征[J]. 天然气地球科学, 2011, 22(3): 465-476.
HUANG W M, LIU S G, WANG G Z, et al. Geological conditions and gas features in Lower Paleozoic in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(3): 465-476.
9 李凌, 谭秀成, 夏吉文, 等. 海平面升降对威远寒武系滩相储层的影响[J]. 天然气工业, 2008, 28(4): 19-21.
LI L, TAN X C, XIA J W, et al. Influences of eustatic movement on the Cambrian reservoirs of bank facies in Weiyuan gas field, the Sichuan Basin[J]. Natural Gas Industry, 2008, 28(4): 19-21.
10 李凌, 谭秀成, 赵路子, 等. 碳酸盐台地内部滩相薄储集层预测——以四川盆地威远地区寒武系洗象池群为例[J]. 石油勘探与开发, 2013, 40(3): 334-340.
LI L, TAN X C, ZHAO L Z, et al. Prediction of thin shoal-facies reservoirs in the carbonate platform interior: A case from the Cambrian Xixiangchi Group of the Weiyuan area, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
11 赵爱卫,谭秀成,李凌, 等. 四川盆地及其周缘地区寒武系洗象池群颗粒滩特征及分布[J]. 古地理学报, 2015, 17(1): 21-32.
ZHAO A W, TAN X C, LI L, et al. Characteristics and distribution of grain banks in the Cambrian Xixiangchi Group of Sichuan Basin and its adjacent area[J]. Journal of Paleogeography, 2015, 17(1): 21-32.
12 张帆, 文应初, 强子同. 四川盆地寒武系洗象池群碳酸盐岩向上变浅沉积序列[J]. 矿物岩石地球化学通报, 1999, 18(1): 23-27.
ZHANG F, WEN Y C, QIANG Z T. Upward shallowing sequences of Cambrian carbonate rocks in the Xixiangchi Group in the Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 23-27.
13 井攀, 徐芳艮, 肖尧, 等. 川中南部地区上寒武统洗象池组沉积相及优质储层台内滩分布特征[J]. 东北石油大学学报, 2016, 40(1): 40-50.
JING P, XU F G, XIAO Y, et al. The bank facies distribution of Upper Cambrian Xixiangchi Formation in the southern area of central Sichuan Basin[J]. Journal of Northeast Petroleum University, 2016, 40(1): 40-50.
14 江文剑, 侯明才, 邢凤存, 等. 川东南地区娄山关群白云岩储层特征及主控因素[J]. 岩性油气藏, 2016, 28(5): 44-51.
JIANG W J, HOU M C, XING F C, et al. Characteristics and main controlling factors of dolomite reservoirs of Cambrian Loushanguan Group in the southeastern Sichuan Basin[J]. Li-thologic Reservoirs, 2016, 28(5): 44-51.
15 李旭兵, 刘安, 曾雄伟, 等. 雪峰山西侧地区寒武系娄山关组碳酸盐岩储层特征研究[J]. 石油实验地质, 2012, 34(2): 153-157.
LI X B, LIU A, ZENG X W, et al. Characteristics of carbonate reservoirs of Cambrian Loushanguan Formation to the west of Xuefeng Mountain[J]. Petroleum Geology & Experiment, 2017, 34(2): 153-157.
16 王素芬, 李伟, 张帆, 等. 乐山—龙女寺古隆起洗象池群有利储集层发育机制[J]. 石油勘探与开发,2008,35(2): 170-174.
WANG S F, LI W, ZHANG F, et al. Developmental mechanism of advantageous Xixiangchi Group reservoirs in Leshan-Longnvsi palaeohigh[J]. Petroleum Exploration and Development, 2008, 35(2): 170-174.
17 周磊, 康志宏, 柳洲, 等. 四川盆地乐山—龙女寺古隆起洗象池群碳酸盐岩储层特征[J]. 中南大学学报:自然科学版, 2014, 45(12): 4393-4402.
ZHOU L, KANG Z H, LIU Z, et al. Characteristics of Xixiangchi Group carbonate reservoir space in Leshan-Longnvsi palaeouplift, Sichuan Basin[J]. Journal of Central South University :Science and Technology, 2014, 45(12): 4393-4402.
18 林怡, 陈聪, 山述娇,等. 四川盆地寒武系洗象池组储层基本特征及主控因素研究[J]. 石油实验地质, 2017, 39(5): 610-617.
LIN Y, CHEN C, SHAN S J, et al. Reservoir characteristics and main controlling factors of the Cambrian Xixiangchi Formation in the Sichuan Basin[J]. Petroleum Geology & Experiment, 2017, 39(5): 610-617.
19 李文正, 周进高, 张建勇, 等. 四川盆地洗象池组储集层的主控因素与有利区分布[J]. 天然气工业, 2016, 36(1): 52-60.
LI W Z, ZHOU J G, ZHANG J Y, et al. Main controlling factors and favorable zone distribution of Xixiangchi Formation reservoirs in the Sichuan Basin[J].Natural Gas Industry, 2016, 36(1): 52-60.
20 徐安娜, 胡素云, 汪泽成,等. 四川盆地寒武系碳酸盐岩—膏盐岩共生体系沉积模式及储层分布[J]. 天然气工业, 2016, 36(6): 11-20.
XU A N, HU S Y, WANG Z C, et al. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporate paragenesis system in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(6): 11-20.
21 李伟, 余华琪, 邓鸿斌. 四川盆地中南部寒武系地层划分对比与沉积演化特征[J]. 石油勘探与开发, 2012, 39(6): 681-690.
LI W, YU H Q, DENG H B. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 681-690.
22 李磊, 谢劲松, 邓鸿斌, 等. 四川盆地寒武系划分对比及特征[J]. 华南地质与矿产, 2012, 28(3): 197-202.
LI L, XIE J S, DENG H B, et al. Study on characteristics and its stratigraphic classification and correlation of Cambrian in Sichuan Basin[J]. Geology and Mineral Resources of South China, 2012, 28(3): 197-202.
23 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报, 2001, 3(3): 63-66.
SHA Q A. Discussion on mixing deposit and hunji rock[J]. Journal of Paleogeography, 2001, 3(3): 63-66.
24 金民东, 曾伟, 谭秀成, 等. 四川磨溪—高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素[J]. 石油勘探与开发, 2014, 41(6): 650-660.
JIN M D, ZENG W, TAN X C, et al. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation, Moxi-Gaoshiti area, Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(6): 650-660.
25 金民东, 谭秀成, 曾伟, 等. 四川盆地磨溪—高石梯地区加里东—海西期龙王庙组构造古地貌恢复及地质意义[J]. 沉积学报, 2016, 34(4): 634-644.
JIN M D, TAN X C, ZENG W, et al. Reconstruction of the tectonic palaeogeomorphology of Longwangmiao Formation during the Caledonian-Hercynian Period in Moxi-Gaoshiti area, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 634-644.
26 石书缘, 胡素云, 刘伟, 等. 综合运用碳氧同位素和包裹体信息判别古岩溶形成期次[J]. 天然气地球科学, 2015, 26(2): 208-216.
SHI S Y, HU S Y, LIU W, et al. Distinguishing paleokarst period by integrating carbon-oxygen isotopes and fluid inclusion characteristics[J]. Natural Gas Geoscience, 2015, 26(2): 208-216.
27 曹建文, 梁彬, 张庆玉, 等. 湘鄂西地区寒武系娄山关组古岩溶储层及其发育控制因素[J]. 中国岩溶, 2013, 32(3): 330-338.
CAO J W, LIANG B, ZHANG Q Y, et al. Paleokarst reservoir and the formation factors of the Loushanguan group,the Cambrian system in west Hunan and Hubei[J]. Carsologica Sinica, 2013, 32(3): 330-338
28 胡宁, 雷卞军, 黄照军, 等. 鄂西娄山关组顶部古岩溶不整合面的发现及层序地层学意义[J]. 中国区域地质, 1997, 16(1): 15-20.
HU N, LEI B J, HUANG Z J, et al. Discovery of paleokarst unconformity on top of the Loushanguan Formation,Western Hubei,and its significance for sequence stratigraphy[J]. Regional Geology of China, 1997, 16(1): 15-20.
29 赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学, 2014, 44(9): 1925-1939.
ZHAO W Z,SHEN A J,ZHENG J F,et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science China: Earth Sciences, 2014, 44(9): 1925-1939.
30 蒋小琼, 管宏林, 刘光祥, 等. 四川盆地南川地区娄山关群碳酸盐岩成岩作用研究[J]. 石油实验地质, 2015, 37(3): 314-319.
JIANG X Q, GUAN H L, LIU G X, et al. Diagenesis of Middle and Upper Cambrian Loushanguan Group reservoirs in Nanchuan area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2015, 37(3): 314-319.
31 HAERI-ARDAKANI O, AL-AASM I, CONIGLIO M. Petrologic and geochemical attributes of fracture-related dolomitization in Ordovician carbonates and their spatial distribution in southwestern Ontario, Canada[J]. Marine & Petroleum Geology, 2013, 43: 409-422.
32 黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010.
HUANG S J. Carbonate Diagenesis[M].Beijing:Geology Pub-lishing House, 2010.
33 WARREN J K. Evaporites: Sediments, Resources and Hydrocarbons[M]. Germany: Springer, 2006.
34 WARREN J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3): 217-268.
35 施泽进, 王勇, 田亚铭,等. 四川盆地东南部震旦系灯影组藻云岩胶结作用及其成岩流体分析[J]. 中国科学:地球科学, 2013,56(2): 317-328.
SHI Z J, WANG Y, TIAN Y M, et al. Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin[J]. Science China: Earth Science, 2013, 56(2): 192-202.
36 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194.
ZHU G Y, ZHANG S C, LIANG Y B, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan basin[J].Acta Petrologica Sinica,2006,22(8):2182-2194.
37 朱光有, 张水昌, 梁英波. 四川盆地深部海相优质储集层的形成机理及其分布预测[J]. 石油勘探与开发, 2006, 33(2): 161-166.
ZHU G Y, ZHANG S C, LIANG Y B. Formation mechanism and distribution prediction of high-quality marine reservoir in deeper Sichuan Basin[J]. Petroleum Exploration and Development, 2006, 33(2): 161-166.
[1] Hong-lin LIU,Huai-chang WANG,Hui ZHANG,Wei-bo ZHAO,Yan LIU,De-xun LIU,Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[2] Lei YAN, Min YANG, Jun-long ZHANG, Ying-hui CAO, De-dao DU, Shan WANG, Zhao-hui XU, Hong-hui LI, Yi-min ZHAO. Distribution of Cambrian source rocks and evaluation and optimization of favorable zones in East Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 667-674.
[3] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[4] Zeng-ye XIE, Chun-long YANG, Cai-yuan DONG, Xin DAI, Lu ZHANG, Jian-ying GUO, Ze-qing GUO, Zhi-sheng LI, Jin LI, Xue-ning QI. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin, China [J]. Natural Gas Geoscience, 2020, 31(4): 447-461.
[5] Guo-xiao ZHOU, Guo-qi WEI, Guo-yi HU, Sai-jun WU, Ya-jie TIAN, Cai-yuan DONG. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 498-506.
[6] Shuai-jie YANG, Wei-feng WANG, Dao-liang ZHANG, Xiao-dong FU, Jian-yong ZHANG, Wen-zheng LI. Distribution characteristics and formation environment of high quality source rocks of Qiangzhusi Formation in northeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 507-517.
[7] Zhen QIU, Cai-neng ZOU, Hong-yan WANG, Da-zhong DONG, Bin LU, Zhen-hong CHEN, De-xun LIU, Gui-zhong LI, Han-lin LIU, Jiang-lin HE, Lin WEI. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China [J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[8] Wei YANG, Guo-qi WEI, De-jiang LI, Man-cang LIU, Wu-ren XIE, Hui JIN, Jue-hong SHEN, Cui-guo HAO, Xiao-dan WANG. Hydrocarbon accumulation conditions and exploration direction of Silurian Xiaoheba Formation in Sichuan Basin and its adjacent areas, SW China [J]. Natural Gas Geoscience, 2020, 31(1): 1-12.
[9] Jun-jun CAI, Feng LIANG, Tian-hui ZHAN, Li-jia WANG, Qing-song TANG, Zhuang DENG, Xiao-fei GAN. Application of dynamic and static data in recognition of Sinian carbonate reservoir types in the Moxi-Gaoshiti areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(1): 132-142.
[10] Tian-shu Zhang, Shi-zhen Tao, Yin-ye Wu, Jia-jing Yang, Zheng-lian Pang, Xiao-ping Yang, Yan-yan Chen, Miao Yuan, Min Liu, Jian-wei Fan, Rong-chang Feng. Control of sequence stratigraphic evolution on the types and distribution of favorable reservoir in the delta and beach-bar sedimentary system: Case study of Jurassic Lianggaoshan Formation in Central Sichuan Basin, China [J]. Natural Gas Geoscience, 2019, 30(9): 1286-1300.
[11] Zheng-lian Pang, Shi-zhen Tao, Jing-jian Zhang, Qin Zhang, Miao Yuan, Yin-ye Wu, Tian-shu Zhang, Xiao-ping Yang, Jian-wei Fan, Fei-fei Sun. Differentiation accumulation in multiple scales of tight oil and its main controlling factors of Jurassic Da′anzhai member in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1301-1311.
[12] Liang Xiong. The characteristics of pore development of the Lower Cambrian organic⁃rich shale in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331.
[13] Huang Dong, Yang Guang, Yang Zhi, Yang Tian-quan, Bai Rong, Li Yu-cong, Dai Hong-ming. New understanding and development potential of tight oil exploration and development in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1212-1221.
[14] Shen Cheng, Zhao Jin-Zhou, Ren Lan, Fan Yu. A new method to identify fracturing sweet spot in Longmaxi Formation of Sichuan Basin,SW China [J]. Natural Gas Geoscience, 2019, 30(7): 937-945.
[15] Zhao Zheng-wang, Tang Da-hai, Wang Xiao-juan, Chen Shuang-ling. Discussion on main controlling factors of natural gas enrichment and high yield in tight sandstone gas reservoirs:Case study of Xujiahe Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 963-972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 1997, 8(2): 39 -41 .
[2] LI Guang-zhi, HU Bin, DENG Tian-long,YUAN Zi-yan . Petroleum Geological Significance of Microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13 -17 .
[3] . EVALUATING ON HYDROCARBON EXPLORATION POTENTIAL OF LOWER TERTIARY IN BODONG DEPRESSION BY BASIN MODELLING TECHNIQUE[J]. Natural Gas Geoscience, 2004, 15(4): 379 -382 .
[4] . THE KIND OF DINA 2 GAS FIELD[J]. Natural Gas Geoscience, 2004, 15(1): 91 -94 .
[5] . STUDYING ON BASIC THEORY AND INFLUENCE FACTOR OF GAS STORAGE IN S ALT CAVERNS BUILDING WITH WATER SOLUTION[J]. Natural Gas Geoscience, 2006, 17(2): 261 -266 .
[6] LI Mei-jun;WANG Tie-guan;LIU Ju;ZHANG Mei-zhu;LU Hong;MA Qing-lin;GAO Li-hui. GENESIS AND SOURCE OF NATURAL GAS IN THE FUSHAN DEPRESSION, BEIBU WAN BASIN[J]. Natural Gas Geoscience, 2007, 18(2): 260 -265 .
[7] PAN Jian-guo; HAO Fang; ZHANG Hu-quan; WEI Ping-sheng; ZHANG Jing-lian.. FORMATION OF GRANITE AND VOLCANIC ROCK RESERVOIRS AND THEIR ACCUMULATION MODEL [J]. Natural Gas Geoscience, 2007, 18(3): 380 -385 .
[8] . [J]. Natural Gas Geoscience, 1998, 9(5): 28 -36 .
[9] 妥进才, 王先彬, 周世新, 陈晓东, .  [J]. Natural Gas Geoscience, 1999, 10(6): 1 -8 .
[10] . [J]. Natural Gas Geoscience, 1999, 10(6): 27 -31 .