Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (9): 1316-1325.doi: 10.11764/j.issn.1672-1926.2020.03.004

Previous Articles     Next Articles

Effect of iron-bearing minerals on gas generation from pyrolysis of high-mature organic matter in hydrothermal conditions

Wen-jun ZHANG1,2,3,4(),Kun HE3,4(),Xian-qing LI1,2,Jing-kui MI3,4,Guo-yi HU3,4   

  1. 1.State Key Laboratory of Coal Resources and Sofe Mining, China Univeristy of Mining and Technology, Beijing 100083, China
    2.Collega of Geoscience and Surveying Engineering, China University of Mining and Technology,Beijing 100083, China
    3.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    4.State Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing 100083, China
  • Received:2020-02-12 Revised:2020-03-06 Online:2020-09-10 Published:2020-09-04
  • Contact: Kun HE E-mail:zhangwj178@126.com;hekun1@petrochina.com.cn
  • Supported by:
    The National Natural Science Foundation of China(41973068);The China National Science & Technology Major Project(2016ZX05007-001);The Scientific Research and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(2018Ycq01)

Abstract:

In order to ascertain the effect of iron-bearing minerals on gas generation from water-organics reactions, three groups of isothermal pyrolysis involving a high-mature kerogen (kerogen + water, kerogen + pyrite + water, kerogen + magnetite + water) were conducted in hydrothermal conditions by a gold-tube system. Through determination of the yields of gas products, it is indicated that the presence of pyrite and magnetite both led to a certain decrease in the yields of hydrocarbon gases. For instance, the methane yields at Easy%RO of 3.08% in hydrothermal experiments with pyrite and magnetite are about 8.5 and 13.3 mL/gTOC lower than that in pyrolysis with only water. The yield and carbon isotopic ratios of CO2 in pyrolysis involving water and pyrite are evidently higher than those in pyrolysis involving only water and involving water and magnetite. The H2S yields in hydrothermal experiments with Fe-bearing minerals (especially magnetite) are much lower compared with those without minerals. The analysis of gas compositions shows that the presence of pyrite apparently resulted in the increase of gas dryness and the decrease of relative content of isomeric hydrocarbons. The hydrogen isotope of the gas product of the water-magnetite system is relatively lower than that of the water-only system, indicating that the addition of magnetite promoted the formation of early H2 and hydrogenation occurred with the organic matter. These results indicate that the addition of iron-bearing minerals may inhibit the carbocation reaction, and the hydrogenation of water-organic matter may be mainly a radical reaction.

Key words: Kerogen, Pyrite, Magnetite, Catalytic inhibition, Organic-inorganic interaction

CLC Number: 

  • TE122.1+1

Table 1

The geochemical compositions of kerogen"

层组

TOC

/%

Tmax

/℃

S1

/(mg/g)

S2

/(mg/g)

IH

/(mg/gTOC)

IO

/(mg/gTOC)

干酪根样
H/CO/CS/C
玉尔吐斯组8.454920.334.6354.792.010.620.080.08

Table 2

The yields, chemical and isotopic compositions of gas products in pyrolysis experiments"

温度 /℃时间 /d

Easy%

R0

/%

气体产率/(mL/gTOC

碳同位素

/‰(VPDB)

氢同位素 /‰(VSMOW)含水体质种类
C1C2C3iC4nC4iC5nC5H2CO2H2Sδ13C1δ13C2δ13CCO2δD1
33010.790.0860.00514.05-29.2

+

33071.050.0670.004-—10.08-29.1
330101.110.2230.0480.0140.001 00.001 10.000 20.000 222.54-24.5-29.1-274.7
36011.020.1890.0150.0020.000 30.000 40.000 30.000 419.17-24.4-29.8-269.1
36051.290.5720.0280.0020.000 30.000 40.000 40.000 626.41-45.4-25.3-29.3-272.2
36071.420.9570.0450.0020.000 40.000 40.000 20.000 327.77-44.0-26.2-29.1-275.3
360101.50.7150.0290.0010.000 30.000 30.000 30.000 120.96-45.6-26.4-29.3-266.6
38011.240.4370.0270.0010.000 40.000 40.000 20.000 220.79-47.8-25.9-29.5-266.9
38051.560.7210.0290.0000.000 30.000 30.000 40.000 411.090.01-46.4-25.6-29.4-273.5
38071.722.4190.1000.0020.000 50.000 50.000 70.000 30.00827.860.30-43.5-25.1-29.6-282.1
380101.823.4710.1300.0020.000 40.000 30.000 20.000 20.00630.210.8142.3-24.8-29.0-280.8
40011.491.0190.0510.0030.000 30.000 20.000 30.000 30.00624.170.08-41.3-24.6-29.1-276.6
40051.885.4460.1740.0050.000 20.000 20.001 50.003 30.00531.330.40-38.5-25.1-28.7-279.6
40072.076.6820.2150.0030.004 40.003 70.015 40.008 10.01731.502.63-38.1-24.5-28.7-275.0
400102.1910.9950.3120.0060.005 30.008 00.008 90.006 70.00538.645.76-37.9-24.7-29.0-255.8
45012.3110.3340.3800.0090.001 20.002 00.001 50.001 10.06240.749.35-37.7-24.6-28.6-251.4
45052.8422.5270.4890.0120.000 50.000 70.005 00.003 91.11354.2313.91-34.8-23.6-27.7-184.5
45073.0827.4190.5470.0140.000 50.000 40.016 10.005 11.47460.4314.79-33.6-23.2-28.0-165.3
33010.790.0560.00510.10-29.1

+

+

33050.950.0830.00513.26-28.5
33071.050.1130.00420.08-28.8
330101.110.1120.00321.28-28.5-252.4
36011.020.2000.01117.25-46.2-26.4-256.7
36051.290.3450.0070.00123.05-45.2-26.2-28.4-263.2
36071.420.3430.0050.00122.03-43.1-25.8-27.9-260.3
360101.50.6190.0070.0030.000 30.000 50.000 20.000 138.68-41.5-25.7-27.5-269.1
38011.240.4000.0180.0060.000 30.000 60.000 60.000 423.01-43.9-25.4-28.8-266.8
38051.560.9120.0230.0160.003 10.004 80.005 50.005 733.42-42.6-25.1-28.7-265.4
38071.720.9610.0100.0030.001 30.002 00.002 10.002 435.99-42.5-25.2-28.6-260.8
380101.821.4220.0110.0030.001 00.001 30.002 10.003 20.00647.51-39.9-26.4-29.1-265.4
40011.490.7980.0610.0490.017 70.021 70.001 40.006 00.00527.20-40.6-26.1-29.5-266.8
40051.882.2330.0200.0110.006 00.007 70.010 20.003 90.00739.81-39.8-24.6-28.7-265.1
40072.073.0880.0190.0040.002 50.003 30.002 90.002 30.00744.61-37.8-25.1-28.6-261.5
400102.192.8480.0150.0050.001 90.002 30.003 30.002 80.00645.04-37.4-25.9-28.5-256.4
45012.315.8570.0520.0090.000 40.000 40.000 90.000 70.00050.130.06-37.0-25.8-28.6-241.7
45052.848.3870.0440.0070.000 30.000 30.001 40.001 00.35776.8511.10-32.4-24.2-28.4-168.4
45073.0818.9350.1880.0060.000 40.000 40.71364.8431.55-31.8-24.1-28.2-155.6
33010.790.0830.0050.0010.000 20.000 40.000 20.000 15.60-31.0-30.7

+

+

33050.950.1320.0060.0000.000 60.000 90.002 80.000 87.46-29.4-30.4
33071.050.1380.0070.0010.000 90.001 10.002 80.001 28.17-29.3-30.1
330101.110.1860.0090.0000.000 70.000 80.001 60.001 98.24-29.8-30.0
36011.020.2310.0120.0010.000 60.000 60.002 00.000 86.26-48.6-31.2-30.4-262.7
36051.290.5380.0180.0010.000 40.000 40.001 10.001 28.91-47.1-28.6-30.1-281.1
36071.420.7740.0210.0010.000 30.000 30.005 40.002 513.76-45.8-25.4-30.0-276.8
360101.50.8140.0220.0020.002 10.001 90.000 50.002 511.01-44.9-25.8-30.1-275.1
38011.240.5250.0210.0010.000 60.000 50.000 20.000 47.09-43.9-26.0-30.4-276.3
38051.561.4750.0290.0050.001 80.001 70.000 30.000 418.00-42.3-24.3-30.0-276.6
38071.721.9400.0460.0010.00411.03-42.6-23.8-30.2-289.1
380101.821.8340.0230.0010.00417.37-41.6-23.3-30.0-281.1
40011.491.0770.0410.0010.00410.40-40.8-23.8-29.9-270.8
40051.883.7200.0510.0010.00521.62-39.7-23.1-29.4-266.4
40072.074.7730.0360.0010.00522.72-38.8-22.6-29.3-259.5
400102.194.2300.0160.0010.00626.91-38.9-22.6-28.6-256.3
45012.319.3120.1140.0030.00623.08-36.2-18.2-28.9-249.6
45052.8413.0410.0170.0040.00542.76-33.7-19.6-28.7-189.7
45073.0814.1280.0340.0090.00953.22-33.3-19.4-28.3-171.4

Fig.1

The evolution of yields and chemical compositions of gas products with Easy%RO"

Fig.2

The evolution of carbon(δ13CCO2) and hydrogen(δD1) isotopic ratios of gas products with Easy%RO"

1 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin:Springer Verlag, 1984:330-381.
2 LEWAN M D, WINTERS J C, MCDONALD J H. Generation of oil-like pyrolyzates from organicrich shales[J]. Science,1979, 203(4383): 897-899.
3 LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta,1997,61(17): 3691-3723.
4 BEHAR F, LEWAN M D, LORANT M, et al. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J]. Organic Geochemistry, 2003, 34(4):575-600.
5 PAN C C,GENG A S,ZHONG N N, et al.Kerogen pyrolysis in the presence and absence of water and minerals:Amounts and compositions of bitumen and liquid hydrocarbons[J]. Fuel, 2009, 88(5):909-919.
6 GAO L, SCHIMMELMANN A. TANG Y C,et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas[J]. Organic Geochemistry, 2014, 68:95-106.
7 HE K, ZHANG S C, MI J K, et al. Pyrolysis involving n-hexadecane, water and minerals: Insight into the mechanisms and isotope fractionation for water-hydrocarbon reaction[J].Jou-rnal of Analytical and Applied Pyrolysis,2018,130:198-208.
8 LEWAN M D, ROY S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J].Organic Geochemistry,2011,42(1): 31-41.
9 HOERING T C. Thermal reactions of kerogen with added water, heavy water and pure organic substances[J]. Organic Geochemistry,1984,5(4): 267-278.
10 SCHIMMELMANN A, BOUDO J P, LEWAN M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J]. Organic Geochemistry,2001,32(8): 1009-1018.
11 LEIF R N, SIMONEIT B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry,2000, 31(11): 1189-1208.
12 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature,2003, 426(6964): 327-333.
13 ZHANG S C, HE K, HU G Y, et al. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89: 68-82.
14 HE K, ZHANG S C, MI J K, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation, 2019, 37(5): 1558-1576.
15 SEEWALD J S, EGLINTON L B, OEG Y L. An experimental study of organic-inorganic interactions during vitrinite maturation[J]. Geochimica et Cosmochimica Acta,2000, 64(9): 1577-1591.
16 SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
17 MILESI V, PRINZHOFER A, GUYOT F, et al. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimoes Basin, north-west Brazil[J]. Marine and Petroleum Geology,2016, 71: 168-182.
18 CAI Y W, ZHANG S C, HE K, et al. Effects of U-ore on the chemical and isotopic composition of products of hydrous pyrolysis of organic matter[J]. Petroleum Science,2017,14(2):315-329.
19 张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.
ZHANG J L, ZHANG P Z. Discussion of pyrite catalysis on the hydrocarbon generation process[J]. Advance in Earth Scicences, 1996,11(3):282-287.
20 MA X X, ZHENG J J, ZHENG G D, et al. Influence of pyrite on hydrocarbon generation during pyrolysis of type-III kerogen[J]. Fuel, 2016, 167:329-336.
21 REEVES E P, SEEWALD J S, SYLVA S P. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta,2012,77: 582-599.
22 毛榕,米敬奎,张水昌,等.不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J].天然气地球科学,2012,23(6):1127-1134.
MAO R, MI J K, ZHANG Y C, et al. Study on the hydrocaron generation characteristics of different coaly source rocks by gold-tube pyrolysis experiments[J].Natural Gas Geoscien-ce,2012,23(6):1127-1134.
23 MI J K, ZHANG S C, HE K. Experimental investigations about the effect of pressure on gas generation from coal[J]. Organic Geochemistry, 2014,74:116-122.
24 KISSIN Y V. Free-radical reactions of high molecular weight isoalkanes[J]. Industrial and Engineering Chemistry Research, 1987, 26(8):1633-1638.
25 KISSIN Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta,1987,51(9): 2445-2457.
26 于林平,潘长春,刘金钟,等.氧化作用对气态烃组成和碳同位素组成的影响[J].地球化学,2005,34(3):269-277.
YU L P, PAN C C, LIU J Z, et al. Effects of oxidation on gaseous hydrocarbon composition and carbon isotope composition [J]. Geochemistry, 2005,34(3):269-277.
27 HE K, ZHANG S C, MI J K, et al. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J]. Petroleum Science, 2011,8(2):134-142
28 SACKETT W M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochimica et Cosmochimica Acta, 1978,42(6):571-580.
29 CRAMER B, KROOSS B M, LITTKLE R. Modelling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach[J]. Chemical Geology,1998, 149(3): 235-250.
30 HE K, ZAHNG S C, MI J K, et al. The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis[J]. Fuel, 2018,211: 492-506.
31 TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta,2000, 64(15): 2673-2687.
32 王晓峰,刘文汇,徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展,2006,16(10):1275-1281.
WANG X F, LIU W H, XU Y C, et al. Thermal simulation experimental study on the role of water in the evolution of organic matter forming gaseous hydrocarbons[J]. Progress in Natural Science, 2006,16(10):1275-1281.
33 孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3):524-532.
SUN L N, ZHANG M F, WU C J, et al. The effect of water medium on the products of different pyrolysis system[J]. Natural Gas Geoscience, 2015,26(3):524-532.
34 马跃, 李术元, 王娟,等. 水介质条件下油页岩热解机理研究[J]. 燃料化学学报, 2011,39(12):881-886.
MA Y, LI S Y, WANG J, et al. Mechanism of oil shale pyrolysis under high pressure water[J].Journal of Fuel Chemistry and Technology, 2011,39(12):881-886.
[1] Feng-hua Ma, Jin-li Pan, Rui-yun Ma, Yong Zhang, Xiao-juan Ma. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
[2] Liu Tian, Feng Ming-you, Wang Xing-zhi, Chen Bo, Zhang Liang-hua, Liu Xiao-hong, Wang Jue-bo. Elemental geochemical characteristics and limit on sedimentary environmentin the Late Ordovician Wufengian period in the Wuxi area,NE Chongqing [J]. Natural Gas Geoscience, 2019, 30(5): 740-750.
[3] Liu Jia-yi, Liu Quan-you, Zhu Dong-ya, Meng Qing-qiang, Huang Xiao-wei . Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process [J]. Natural Gas Geoscience, 2019, 30(4): 478-492.
[4] Kang Guang-xing, Xu Xue-min, Wang Shuang-qing, Yang Jia-jia, Sun Wei-lin, Shen Bin, Qin Jing, Lu Ran, Zhang Xiao-tao, Guo Wang. Experimental study on thermal evolution of kerogen in Paleozoic#br# #br# Experimental study on thermal evolution of kerogen in Paleozoic#br# [J]. Natural Gas Geoscience, 2019, 30(4): 593-602.
[5] Sheng-bo Han,Wu Li. Study on the genesis of pyrite in the Longmaxi Formation shale in the Upper Yangtze area [J]. Natural Gas Geoscience, 2019, 30(11): 1608-1618.
[6] Wang Qiang, Zhang Da-yong, Wang Jie, Tao Cheng, Tenger, Liu Wen-hui. Hydrocarbon and non-hydrocarbon characteristics for comprehensive identification about kerogen pyrolysis gas and oil cracked gas [J]. Natural Gas Geoscience, 2018, 29(9): 1231-1239.
[7] Wang Peng-fei, Jiang Zhen-xue, Lü Peng, Jin Can, Li Xin, Huang Pu. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing [J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
[8] Cao Tao-tao,Deng Mo,Song Zhi-guang,Liu Guang-xiang,Huang Yan-ran,Andrew Stefan Hursthouse. Study on the effect of pyrite on the accumulation of shale oil and gas [J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
[9] Cai Yu-wen,Zhang Shui-chang,He Kun,Mi Jing-kui,Zhang Wen-long,Wang Xiao-mei,Wang Hua-jian,Wu Chao-dong. The effect of magnetite on the products and isotopic fractions of gaseous hydrocarbons [J]. Natural Gas Geoscience, 2017, 28(2): 331-340.
[10] Xie Zeng-ye, Li Zhi-sheng, Wei Guo-qi, Li Jian, Wang Dong-liang, Wang Zhi-hong, Dong Cai-yuan. Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas [J]. Natural Gas Geoscience, 2016, 27(6): 1057-1066.
[11] QU Zhen-ya,SUN Jia-nan,SHI Jian-ting,ZHAN Zhao-wen,ZOU Yan-rong,PENG Ping-an. Characteristics of Stable Carbon Isotopic Composition of Shale Gas [J]. Natural Gas Geoscience, 2015, 26(7): 1376-1384.
[12] YANG Xian-cheng,JIANG You-lu,GENG Chun-yan. Origin and Accumulation of Cracking Gas in the Deep Buried Horizons in Jiyang Depression [J]. Natural Gas Geoscience, 2014, 25(8): 1226-1232.
[13] XIONG De-ming,MA Wan-yun,ZHANG Ming-feng,WU Chen-jun,TUO Jin-cai. New Method for the Determination of Kerogen Type and the Hydrocarbon Potential [J]. Natural Gas Geoscience, 2014, 25(6): 898-905.
[14] ZHANG Jie, LEI Huai-yan, OU Wen-jia, YANG Yu-feng, GONG Chu-jun, SHI Chun-xiao. Research of the Sulfate-Methane Transition Zone (SMTZ)in Sediments of 973-4 Column in Continental Slope of Northern South China Sea [J]. Natural Gas Geoscience, 2014, 25(11): 1811-1820.
[15] LI Zhi-feng,LI Zhi-ping,MIAO Li-li,FU Ying-kun,WANG Yang,XIE Shan. Gas Flow Characteristics in Nanoscale Pores of Shale Gas [J]. Natural Gas Geoscience, 2013, 24(5): 1042-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[4] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[5] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[6] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[7] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .
[8] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[9] SHI Li-zhi;LIN Tie-fen;WANG Zhen-liang;WANG Zhuo-zhuo;YAO Yong. RESEARCH ON THE MIGRATION AND ACCUMULATION SYSTEMS OF NATURAL GAS AND HYDROCARBON MIGRATION OF THE LOWER CRETACEOUS STRATA IN KUQA DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 78 -83 .
[10] WANG Ru. GEOCHEMICAL CHARACTERISTICS AND HYDROCARBON RESERVOIR FORMING PROCESURE ANALYSIS OF TWO TERMS OF RESERVOIR FORMING IN SHENGTUO OI LFIELD[J]. Natural Gas Geoscience, 2006, 17(1): 133 -136 .