Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (10): 1389-1403.doi: 10.11764/j.issn.1672-1926.2020.03.002

Previous Articles     Next Articles

Characteristics and main controlling factors of Upper Cambrian carbonate reservoir in Gucheng area, Tarim Basin, NW China

Shan WANG1(),Ying-hui CAO1,Ya-jin ZHANG2,De-dao DU1,Jing-shun QI2,Ying BAI1,Lei YAN1,Min YANG1,Jun-long ZHANG2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Daqing Oilfield Company,Daqing 163712,China
  • Received:2019-12-11 Revised:2020-03-09 Online:2020-10-10 Published:2020-09-30
  • Supported by:
    The 13th Five-Year Plan of CNPC(2019B-04);The Major Science and Technology Project of CNPC(2016E-0204)

Abstract:

The Lower Paleozoic carbonate rock in Gucheng area is a significant exploration area in eastern Tarim Basin. In recent years, Gucheng 6, Wells Gucheng 8 and Gucheng 9 have obtained high capacity gas flow in the Middle and Lower Ordovician dolomite reservoir, which shows good exploration potential in this area. But Wells Chengtan1 and Chengtan 2 aiming at Cambrian have made no breakthrough. The main controlling factor of dolomite reservoir has become one of the critical problems restricting the exploration of Cambrian carbonate rocks. On the basis of previous studies, the Upper Cambrian carbonate reservoir in Gucheng area has been deep studied in combination with core description, thin section observation, isotope analysis, main and trace elements analysis and other geochemical analysis. The Upper Cambrian carbonate reservoir in Gucheng area is mainly developed in dolostone. The lithologies are mainly grain dolomite, algae (reef) microbial dolomite, breccia dolomite and crystalline dolomite. The main reservoir spaces are intergranular dissolved pores, intragranular dissolved pores, intercrystalline dissolved pores and dissolved caves. The Upper Cambrian reservoirs in the study area can be divided into four types, including grain dolomite pore reservoir, crystalline dolomite pore reservoir, breccia dolomite fracture-pore reservoir and crystalline dolomite fracture-pore reservoir. Reef-shoal facies are the material basis of dolostone reservoir; dissolution and dolomitization in the penecontemporaneous period is the key to reservoir formation and burial-hydrothermal dissolution is an important complement to reservoir development.

Key words: Tarim Basin, Gucheng area, Upper Cambrian, Carbonate reservoir, Reservoir characteristics, Main controlling factors of reservoir

CLC Number: 

  • TE122.2+2

Fig.1

Tectonic units(a) and Cambrian stratigraphic histogram(b) of Gucheng area"

Fig.2

Petrology and reservoir space of dolostone in Upper Cambrian of Gucheng area"

Fig.3

Imaging logging characteristics of Upper Cambrian pores and fractures in Gucheng area"

Table 1

Types and characteristics of Upper Cambrian carbonate reservoirs in Gucheng area"

储层类型储集相带储层岩性储集空间储层物性代表井
颗粒云岩孔隙型储层礁坪— 礁脊残余砂屑结构粉晶云岩、残余包粒结构粉细晶云岩粒间、粒内溶孔,晶间(颗粒幻影)溶孔,基质孔发育测井孔隙度为1.2%~2.5%,平均为1.8%;实测孔隙度主要分布在0.7%~1.1%之间,平均为1%;渗透率为(0.01~10.1)×10-3 μm2,平均为0.1×10-3 μm2(样品数=10),为中低孔中低渗储层

城探2

城探1

角砾云岩裂缝—孔洞型储层礁前角砾云岩,角砾成分为藻(礁)微生物云岩岩溶崩塌角砾架空空间遭受热液溶蚀充填改造后的残余孔洞,非均质性强测井孔隙度主要在1.5%~4%之间,平均为3.6%;实测孔隙度主要在1.2%~5.1%之间,平均为2.4%,渗透率为(0.06~3.24)×10-3 μm2,平均为1.03×10-3 μm2(样品数=5),为中低孔中低渗储层城探1
结晶云岩孔隙型储层

局限台地

颗粒滩

中粗晶白云岩,无残余结构晶间孔、晶间溶孔、溶蚀孔洞,均质性较好测井孔隙度主要在0.8%~3.2%之间,平均为1.6%;渗透率为(0.01~10)×10-3 μm2,为中低孔中低渗储层古城8
结晶云岩裂缝—孔洞型储层

局限台地

颗粒滩

中粗晶白云岩,无残余结构沿裂缝发育溶蚀孔洞,呈蜂窝状分布,非均质性较强测井孔隙度主要在1.1%~5.5%之间,平均为2.5%,实测孔隙度主要在1.0%~6.6%之间,平均为2.9%;渗透率为(0.12~1.05)×10-3 μm2,平均为0.96×10-3 μm2(样品数=10),为中低孔中低渗储层古城15

Fig.4

Diagenesis of Upper Cambrian dolomite reservoir in Gucheng area"

Table 2

The values of carbon, oxygen and strontium isotopes for carbonate rock in Upper Cambrian of Gucheng area"

样品号岩性δ13C/‰(PDB)δ18O/‰(PDB)87Sr/86Sr
CT1-1角砾云岩-0.30-9.900.709 585
CT1-2角砾云岩-0.30-9.300.709 629
CT1-3角砾云岩-0.50-10.100.709 497
CT1-4角砾云岩-1.30-8.50
CT1-5角砾云岩-0.40-8.80
CT1-6角砾云岩-0.30-10.00
CT1-7角砾云岩-0.50-9.50
CT1-8角砾云岩-0.30-9.40
CT1-9角砾云岩-0.40-9.70
CT1-10角砾云岩-0.50-9.20
CT1-11角砾云岩-1.05-10.380.709 488
CT1-12角砾云岩-0.62-8.920.709 699
CT1-13角砾云岩-1.45-8.130.709 390
CT1-14角砾云岩-0.61-10.570.709 850
CT1-15角砾云岩-0.67-9.320.709 660
CT1-16角砾云岩-0.47-10.190.709 473
CT1-17角砾云岩-0.55-8.110.710 795
CT2-1硅质岩0.09-10.47
CT2-2硅质岩-0.26-9.79
CT2-3硅质岩0.02-10.15
CT1-18充填粗晶白云石-0.70-9.20
CT1-19充填粗晶白云石-0.90-9.40
CT1-20充填粗晶白云石-0.80-9.60
CT1-21充填粗晶白云石-0.90-9.60
CT1-22充填粗晶白云石-1.00-10.40
CT1-23充填粗晶白云石-1.10-8.70
CT1-24充填方解石-1.80-11.60
CT1-25充填方解石-1.30-13.80
CT1-26充填方解石-1.50-12.00
CT1-27残余颗粒结构云岩0.04-8.57
CT1-28残余颗粒结构云岩0.92-8.87
CT1-29残余颗粒结构云岩1.13-8.69
CT1-30残余颗粒结构云岩0.43-7.28
CT2-4残余颗粒结构云岩-0.11-7.29
CT2-5残余颗粒结构云岩-0.09-7.27
CT2-6残余颗粒结构云岩0.30-7.00
CT2-7残余颗粒结构云岩0.20-6.80
GC8-1中粗晶云岩-0.62-9.12
GC8-2中粗晶云岩-0.12-9.64
GC8-3中粗晶云岩0.04-10.06
GC8-4粗晶云岩-0.56-10.41
GC8-5粗晶云岩-0.88-10.26
GC8-6粗晶云岩-0.69-9.18
GC8-7粗晶云岩1.35-8.06
GC8-8粗晶云岩-0.31-9.13
GC8-9粗晶云岩-0.61-8.89
GC8-10粗晶云岩-0.41-8.98
GC8-11粗晶云岩-0.37-10.09
GC15-1粗晶云岩,晶间方解石充填-0.90-9.800.709 105
GC15-2粗晶云岩,晶间方解石充填-1.10-11.100.709 640
GC15-3粗晶云岩,晶间方解石充填-1.20-11.000.709 203
GC15-4粗晶云岩,晶间方解石充填-1.10-9.700.708 776
GC15-5粗晶云岩,晶间方解石充填-1.10-10.700.708 925
GC15-6粗晶云岩,晶间泥质充填-0.80-7.500.708 773
GC15-7粗晶云岩,晶间泥质充填-1.20-8.000.708 829
GC15-8粗晶云岩,晶间泥质充填-0.90-7.000.708 918
GC15-9粗晶云岩,晶间泥质充填-0.40-5.600.709 008
GC15-10粗晶云岩,晶间泥质充填-0.40-6.400.708 937

Table 3

The REE concentrations and related parameters of carbonate rocks in Upper Cambrian of Gucheng area"

样品号岩性

La

/10-6

Ce

/10-6

Pr

/10-6

Nd

/10-6

Sm

/10-6

Eu

/10-6

Gd

/10-6

Tb

/10-6

Dy

/10-6

Ho

/10-6

Er

/10-6

Tm

/10-6

Yb

/10-6

Lu

/10-6

ΣREE

/10-6

ΣLREE

/10-6

ΣHREE

/10-6

LREE/HREEδEuδCe
CT1-31粗晶云岩1.242.200.281.000.210.060.180.040.150.040.090.030.080.025.624.990.637.891.440.86
CT1-11角砾云岩0.601.100.140.560.110.020.090.020.080.020.050.010.040.012.852.530.328.031.130.88
CT1-32硅质云岩1.202.300.281.100.210.050.190.030.150.030.090.020.070.015.745.150.608.651.140.91
CT1-12角砾云岩0.761.400.180.720.150.030.100.020.100.020.060.010.050.013.603.230.378.751.010.88
CT1-33硅质云岩1.302.300.261.100.190.050.160.020.140.030.080.010.060.015.715.200.5110.141.280.90
CT1-34粗晶云岩0.470.890.120.490.080.020.080.010.070.010.040.010.030.012.322.060.258.131.220.88
CT1-35残余颗粒结构粉晶云岩1.192.440.261.120.210.040.180.020.130.030.090.010.070.015.805.260.549.810.871.01
CT1-28残余颗粒结构粉晶云岩1.022.020.220.920.210.040.160.020.130.020.080.010.070.014.924.430.508.900.980.98
CT1-36残余颗粒结构粉晶云岩1.733.800.401.670.320.060.280.040.240.050.130.020.120.028.877.970.908.900.931.05
CT1-29残余颗粒结构粉晶云岩1.032.280.241.050.220.040.160.030.150.030.090.020.070.015.414.850.568.730.891.06
CT1-30残余颗粒结构粉晶云岩1.532.810.351.390.290.050.260.040.210.040.120.020.100.017.216.410.798.070.800.89
GC8-12中—粗晶云岩0.861.770.220.860.250.100.020.120.020.060.010.060.014.354.040.3013.442.370.94
GC8-13中—粗晶云岩0.460.830.090.350.130.060.030.080.010.070.000.040.012.151.920.248.111.690.93
GC8-2中—粗晶云岩5.1410.631.314.951.080.560.190.910.170.480.080.390.0625.9423.662.2810.362.340.94
GC8-3中粗晶云岩0.731.180.150.570.120.030.020.110.020.070.010.060.013.092.780.319.091.090.81
GC8-14粗晶云岩1.502.750.351.190.420.180.070.240.040.150.020.110.027.036.390.649.962.020.88
GC8-4粗晶云岩0.651.560.130.400.090.030.010.070.010.040.010.030.013.042.860.1716.461.401.22
GC8-15粗晶云岩2.753.990.431.470.260.090.040.180.030.100.020.090.019.468.990.4719.141.720.83
GC8-5粗晶云岩0.150.200.020.350.120.070.020.040.010.020.000.010.001.000.900.109.123.090.79
GC8-6粗晶云岩0.952.230.180.540.120.040.020.090.020.040.010.040.014.274.050.2218.681.491.24
GC8-7粗晶云岩10.0021.192.479.061.800.360.301.460.270.790.120.690.1048.6144.873.7412.000.920.98
GC8-8粗晶云岩0.651.120.120.470.090.020.010.070.010.040.010.040.012.652.480.1813.981.330.91
GC8-9粗晶云岩1.594.130.320.910.220.050.030.170.030.100.020.100.027.667.210.4615.841.011.33
GC8-10粗晶云岩4.9712.691.083.250.770.290.160.920.200.610.110.650.1025.7823.032.748.401.551.26
GC8-11粗晶云岩0.530.980.120.490.220.120.010.080.010.040.010.040.012.642.450.1912.773.660.91
GC15-1粗晶云岩,晶间方解石充填0.982.160.220.840.170.030.160.020.130.030.080.010.080.014.934.410.528.450.931.06
GC15-2粗晶云岩,晶间方解石充填1.833.740.441.670.320.080.300.040.240.050.130.020.100.028.968.070.899.061.180.96
GC15-3粗晶云岩,晶间方解石充填3.677.580.812.980.540.120.480.060.350.060.180.020.160.0217.0315.691.3411.701.061.01
GC15-4粗晶云岩,晶间方解石充填1.122.130.220.830.150.030.130.020.120.020.070.010.070.014.954.490.469.801.120.97
GC15-5粗晶云岩,晶间方解石充填2.264.520.522.000.380.080.340.050.290.060.180.030.180.0310.909.751.158.471.000.96
GC15-6粗晶云岩,晶间泥质充填1.603.180.341.310.260.050.220.030.180.040.110.020.110.027.476.740.739.291.030.98
GC15-7粗晶云岩,晶间泥质充填2.384.640.521.990.380.070.310.040.240.050.140.020.140.0210.949.970.9610.340.930.96
GC15-8粗晶云岩,晶间泥质充填1.192.200.240.910.170.030.170.020.140.030.080.010.080.015.314.760.568.570.890.94
GC15-9粗晶云岩,晶间泥质充填1.142.220.250.930.180.030.150.020.120.030.070.010.070.015.244.750.499.760.780.95
GC15-10粗晶云岩,晶间泥质充填1.322.530.281.060.200.040.180.020.140.030.080.010.080.015.985.430.559.880.940.95

Table 4

Major and trace elements of carbonate rocks in Upper Cambrian of Gucheng area"

样品编号岩性Sr/10-6Mn/10-6Na/10-6Fe/10-6
CT1-14角砾云岩49.80497.30300.005 500.00
CT1-16角砾云岩40.00319.70200.002 300.00
CT1-11角砾云岩41.80370.00600.003 400.00
CT2-8硅质岩23.00735.10300.009 600.00
CT2-9硅质岩12.501 537.80400.0020 600.00
CT2-10硅质岩11.302 186.90400.0029 200.00
CT2-11硅质岩17.901 281.90400.0015 600.00
CT2-12残余颗粒结构云岩152.0060.001 780.00950.00
CT2-13残余颗粒结构云岩164.0070.001 880.001 270.00
CT2-14残余颗粒结构云岩148.0060.002 090.007 310.00
CT2-15残余颗粒结构云岩148.0080.001 980.001 850.00
CT2-16残余颗粒结构云岩82.0040.001 880.001 650.00
GC8-16砂屑灰岩238.6130.02
GC8-12中粗晶云岩80.88103.16
GC8-13中粗晶云岩89.1740.60
GC8-2中粗晶云岩126.05138.54
GC8-3中粗晶云岩86.9066.48
GC8-8粗晶云岩77.50114.78
GC8-7粗晶云岩152.1966.36
GC8-6粗晶云岩91.50126.97
GC8-14粗晶云岩43.7884.96
GC8-4粗晶云岩81.18115.38
GC8-15粗晶云岩209.24108.32
GC8-5粗晶云岩71.0742.12
GC8-9粗晶云岩109.0149.73
GC8-10粗晶云岩166.28169.81
GC8-11粗晶云岩73.64175.28
GC15-1粗晶云岩,晶间方解石充填95.0452.89
GC15-2粗晶云岩,晶间方解石充填152.7655.57
GC15-3粗晶云岩,晶间方解石充填140.1350.39
GC15-4粗晶云岩,晶间方解石充填87.3872.73
GC15-5粗晶云岩,晶间方解石充填107.4656.49
GC15-6粗晶云岩,晶间泥质充填214.1861.46
GC15-7粗晶云岩,晶间泥质充填190.7168.92
GC15-8粗晶云岩,晶间泥质充填212.9245.05
GC15-9粗晶云岩,晶间泥质充填224.7542.61
GC15-10粗晶云岩,晶间泥质充填269.7539.42

Fig. 5

Geochemical characteristics of Upper Cambrian dolomite reservoir in Wells Chengtan 1 and Chengtan 2"

Fig.6

Geochemical characteristics of Upper Cambrian dolomite reservoir in Well Gucheng 8"

Fig.7

Geochemical characteristics of Upper Cambrian dolomite reservoir in Well Gucheng15"

1 贺锋,林畅松,刘景彦,等.古城地区碳酸盐岩沉积特征及其主控因素[J].特种油气藏,2016,23(5):17-21.
HE F,LIN C S,LIU J Y,et al. Carbonate rock sedimentation and its main-controlling factors in Gucheng[J].Special Oil and Gas Reservoirs,2016,23(5):17-21.
2 王坤,刘伟,黄擎宇,等.塔里木盆地塔中—古城地区寒武系沉积体系发育特征与演化[J].地质科技情报,2015,34(6):116-124.
WANG K,LIU W,HUANG Q Y,et al. Development characteristics and evolution of the Cambrian sedimentary system in Tazhong and Gucheng area,Tarim Basin[J].Geological Science and Technology Information,2015,34(6):116-124.
3 刘洋.塔东地区寒武系储层沉积相特征研究[J].长江大学学报:自然科学版,2014,11(31):17-20.
LIU Y. The characteristics of sedimentary facies in the Cambrian reservoirs of Tadong area[J].Journal of Yangtze University:Natural Science Edition,2014,11(31):17-20.
4 沈安江,付小东,张友,等.塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J].天然气地球科学,2018,29(1):1-16.
SHEN A J,FU X D,ZHANG Y,et al. A study of source rocks & carbonate reservoirs and its implication on exploration plays from Sinian to Lower Paleozoic in the east of Tarim Basin, northwest China[J].Natural Gas Geoscience,2018,29(1):1-16.
5 刘伟,沈安江,柳广弟,等.塔里木盆地塔东地区下古生界碳酸盐岩储层特征与勘探领域[J].海相油气地质,2016,21(2):1-12.
LIU W,SHEN A J,LIU G D,et al. Characteristics and exploration domains of Lower Paleozoic carbonate reservoirs in eastern Tarim Basin[J].Marine Origin Petroleum Geology,2016,21(2):1-12.
6 卢曦.塔里木盆地古城地区下古生界碳酸盐岩成岩作用及储层孔隙特征[J].大庆石油地质与开发,2016,35(4):15-21.
LU X. Lower Paleozoic carbonate reservoir diageneses and pore characteristics in Gucheng area of Tarim Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2016,35(4):15-21.
7 郑兴平,张友,陈希光,等.塔里木盆地东部碳酸盐岩储层特征与天然气勘探方向[J].天然气地球科学,2016,27(5):765-771.
ZHENG X P,ZHANG Y,CHEN X G,et al. Natural gas exploration domains and analysis of carbonate reservoir characteristics in the east of Tarim Basin,NW China[J]. Natural Gas Geoscience,2016,27(5):765-771.
8 符浩,李国蓉,王冬娅,等.塔东地区寒武系碳酸盐岩成岩作用及储层成因机理[J].科学技术与工程,2016,16(7):18-26.
FU H,LI G R,WANG D Y,et al. The carbonate diagenesis and formation mechanism of the reservoir of Cambrian in east Tarim Basin[J]. Science Technology and Engineering,2016,16(7):18-26.
9 刘永福,殷军,孙雄伟,等.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.
LIU Y F,YIN J,SUN X W,et al. Cambrian sedimentary characteristics and origin of high-quality dolomite reservoirs in eastern Tarim Basin[J]. Natural Gas Geoscience,2008,19(1):126-132.
10 马锋,许怀先,顾家裕,等.塔东寒武系白云岩成因及储集层演化特征[J].石油勘探与开发,2009,36(2):144-155.
MA F,XU H X,GU J Y,et al. Cambrian dolomite origin and reservoir evolution in east Tarim Basin[J]. Petroleum Exploration and Development, 2009,36(2):144-155.
11 金振奎,杨有星,余宽宏,等.塔里木盆地东部地区寒武系白云岩成因类型[J].古地理学报,2012,14(6):747-756.
JIN Z K,YANG Y X,YU K H,et al. Genetic types of dolostones in the Cambrian,eastern Tarim Basin[J]. Journal of Palaeogeography,2012,14(6):747-756.
12 胡九珍,刘树根,冉启贵,等.塔东地区寒武系—下奥陶统成岩作用特征及对优质储层形成的影响[J].成都理工大学学报:自然科学版,2009,36(2):138-146.
HU J Z,LIU S G,RAN Q G,et al. Diagenetic characteristics and their effect on the formation of good-quality reservoirs of the Cambrian system to Lower Ordovician in the east of Tarim Basin,Xinjiang,China[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(2):138-146.
13 符浩,李国蓉,陈兰朴,等.塔东地区寒武系白云岩地球化学特征与成因模式[J].东北石油大学学报,2016,40(2):47-57.
FU H, LI G R,CHEN L P,et al. Geological characteristics and genetic model of Cambrian dolomite in East Tarim Basin[J].Journal of Northeast Petroleum University,2016,40(2):47-57.
14 王坤,胡素云,胡再元,等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J].石油学报,2016,37(4):439-453.
WANG K,HU S Y,HU Z Y, et al. Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica,2016,37(4): 439-453.
15 王坤,胡素云,刘伟,等.塔里木盆地古城地区上寒武统热液改造型储层形成机制与分布预测[J].天然气地球科学,2017,28(6):939-951.
WANG K,HU S Y,LIU W,et al. The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area,Tarim Basin,China[J]. Natural Gas Geoscience,2017,28(6):939-951.
16 闫博.塔东热液地质作用机制及对储层的改造意义[J].西南石油大学学报:自然科学版, 2018,40(4):17-28.
YAN B. Mechanism of geological activities of eastern Tarim basin hydrothermal fluids and its significance in reservoir transformation[J]. Journal of Southwest Petroleum University :Science & Technology Edition,2018,40(4):17-28.
17 王招明,杨海军,齐英敏,等.塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J].天然气工业,2014,34(1):1-9.
WANG Z M,YANG H J,QI Y M,et al. Ordovician gas exploration breakthrough in the Gucheng lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry,2014,34(1):1-9.
18 倪新峰,沈安江,陈永权,等.塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示[J].天然气地球科学,2015,26(7):1245-1255.
NI X F,SHEN A J,CHEN Y Q,et al. Cambrian carbonate platform tupes, platform margin segmentation characteristics and exploration enlightenment in Tarim Basin[J]. Natural Gas Geoscience,2015,26(7):1245-1255.
19 赵宗举,罗家洪,张运波,等.塔里木盆地寒武纪层序岩相古地理[J].石油学报,2011,32(6):937-948.
ZHAO Z J,LUO J H,ZHANG Y B,et al. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J].Acta Petrolei Sinica,2011,32(6):937-948.
20 黄擎宇,胡素云,潘文庆,等.塔里木盆地巴楚地区寒武系储层特征及主控因素[J].天然气地球科学,2016,27(6):982-993.
HUANG Q Y,HU S Y,PAN W Q,et al. Characteristics and controlling factors of Cambrian carbonate reservoirs in Bachu area,Tarim Basin,NW China[J]. Natural Gas Geoscience,2016,27(6):982-993.
21 王珊,曹颖辉,杜德道,等.塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J].天然气地球科学,2018,29(6):784-795.
WANG S,CAO Y H,DU D D,et al. The facies and characteristics of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China[J].Natural Gas Geoscience,2018,29(6):784-795.
22 汤朝阳,王敏,姚华舟,等.白云石化作用及白云岩问题研究述评[J] .东华理工学院学报:自然科学版,2006,29(3):205-210.
TANG C Y,WANG M,YAO H Z,et al. Current topics about dolomitization and the problem of dolostones[J]. Journal of East China Institute of Technology :Natural Science Edition,2006,29(3):205-210.
23 VEIZER J,ALA D,AZMY K,et al. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J].Chemical Geology,1999,161(1):59-88.
24 黄思静,碳酸盐岩的成岩作用[M].北京:地质出版社,2010:121-122.
HUANG S J,Carbonate Diagensis[M].Beijing:Geological Pu-blishing House,2010:121-122.
[1] Ying-hui CAO, Hong-hui LI, Shan WANG, Jing-shun QI, Jin-you HE, Hong-jiang WANG. An inquiry into the sedimentary model of Upper Sinian in Tadong Uplift of Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1099-1110.
[2] Hui-li LI, Dong-hua YOU, Jun HAN, Yi-xiong QIAN, Xu-guang SHA, Bin-bin XI. The fluid origin of calcite veins in Shunnan-Gucheng area of Tarim Basin and its implications for hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(8): 1111-1125.
[3] Zi-cheng CAO, Dong-hua YOU, Li-xin QI, Lu YUN, Wen-xuan HU, Zong-jie LI, Yi-xiong QIAN, Yong-li LIU. New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis [J]. Natural Gas Geoscience, 2020, 31(7): 915-922.
[4] Guang-you ZHU, Chong-hao SUN, Bin ZHAO, Ting-ting LI, Zhi-yong CHEN, Hai-jun YANG, Lian-hua GAO, Jin-hua HUANG. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7 000 m [J]. Natural Gas Geoscience, 2020, 31(5): 587-601.
[5] Ze-yu WANG, Zhan-feng QIAO, Fang-yi SHOU, Shao-xing MENG, Xue-ju LÜ. Origin and formation mechanism of dolomite in Penglaiba Formation of Yonganba outcrop, Tarim Basin: Evidence from ordering degree and unit cell parameters [J]. Natural Gas Geoscience, 2020, 31(5): 602-611.
[6] Zhao-hui XU, Lu WANG, Ying-hui CAO, Hong-hui LI, Lei YAN, Shan WANG, Yi-min ZHAO, Min YANG. Quantitative prediction of siliceous content and its controlling factor in the third member of Yingshan Formation in Gucheng area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 612-622.
[7] Ke WANG, Rong-hu ZHANG, Chao-feng YU, Zhao YANG, Yan-gang TANG, Hong-xing WEI. Characteristics and controlling factors of Jurassic Ahe reservoir of the northern tectonic belt, Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 623-635.
[8] Min ZHANG, Zheng-hong ZHANG, Yi-xue XIONG, Yong-quan CHEN, Xiao-xue WANG, Hao HE, Qian KANG, Yuan MA, Dong-po SU. Formation mechanism and distribution of carbonate reservoirs in the 3rd-4th members of Ordovician Yingshan Formation on the northern slope of Tazhong Uplift [J]. Natural Gas Geoscience, 2020, 31(5): 636-646.
[9] De-bo MA, Wen-juan CUI, Xiao-wan TAO, Hong-kui DONG, Zhao-hui XU, Ting-ting LI, Xiu-yan CHEN. Structural characteristics and evolution process of faults in the Lunnan low uplift, Tabei Uplift in the Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 647-657.
[10] Jin DU, De-bo MA, Wei LIU, Ying-hui CAO, Yi-min ZHAO, Jing-shun QI, Min YANG. Structural characteristics and formation mechanism of faults in Xiaotangnan area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(5): 658-666.
[11] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[12] Shan WANG, Ying-hui CAO, Ya-jin ZHANG, De-dao DU, Zhao-hui XU, Min YANG, Yi-min ZHAO. Origin and geochemical characteristics of siliceous rocks in the third Member of Yingshan Formation in Gucheng area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 710-720.
[13] Ran XIONG, Jian-feng ZHENG, Li-li HUANG, Yong-quan CHEN, Xin-feng NI. Mound-shoal complexes geological and seismic forward modeling of the Cambrian Xiaoerbulake Formation in the Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 735-744.
[14] Lin-xian CHI, Zhi-yao ZHANG, Guang-you ZHU, Hai-ping HUANG, Jian-fa HAN, Jing-fei LI. The molecular geochemical evidence of two accumulation stages of the Silurian reservoirs in Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 471-482.
[15] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Jun-zhang,SHI He-sheng,SHU Yu,DU Jia-yuan,LUO Jun-lian. HEATING AND PRESSING SIMULATION EXPERIMENTS OF TYPICAL SOURCE ROCKS OF ZHU 1 DEPRESSION--DISCUSSION OF MODES OF HYDROCARBON GENERATION AND EXPELLATION AND TOC RECOVERY COEFFICIENTS[J]. Natural Gas Geoscience, 2006, 17(4): 573 -578 .
[2] Yan Cun-feng,Yuan Jian-ying,Zhao Ying-cheng,Wei Dong-tao,Li Zai-guang. JURASSIC SPORA POLLEN ASSEMBLAGES AND PALEOCLAMATE IN INNERMONGOLIA, GANSU, QINGHAI, CHINA[J]. Natural Gas Geoscience, 2006, 17(5): 634 -639 .
[3] MAO Zhi-chao, Peng De-tang, KUANG Hong-wei. SEDIMENTARY CHARACTERISTIC OF KANGCUN FORMATION IN  DAWANQI OIL FIELD, TARIM BASIN[J]. Natural Gas Geoscience, 2004, 15(2): 196 -200 .
[4] . [J]. Natural Gas Geoscience, 1997, 8(3): 9 -17 .
[5] YU Jun-feng,XIA Bin,XU Jing. AN UNDERSTANDING OF TENSE-SHEARING AND COMPRESSO-SHEARING STRUCTURES IN BOHAI BAY BASIN[J]. Natural Gas Geoscience, 2006, 17(4): 473 -476 .
[6] ZHANG Zhong-min~1,LI Chun-sheng~2,LONG Sheng-xiang~1,XU Hua-zheng~1. EXPLORATION PROSPECT OF UPPER PALAEOZOIC NATURAL GAS INEASTERN AREA OF NORTH CHINA[J]. Natural Gas Geoscience, 2006, 17(3): 330 -334 .
[7] Liu Hua-qing,Li Xiang-bo,Bai Yun-lai,Li Tian-shun. PRESENT SITUATION OF EXPLOITATION and PRODUCTION  AND RESOURCES POTENTIAL FOR OIL-GAS IN GANSU PROVINCE, CHINA[J]. Natural Gas Geoscience, 2006, 17(5): 612 -615 .
[8] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 1 -7 .
[9] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[10] WANG Lian-sheng;LIU Li;GUO Zhan-qian;MA Zhi-hong;CHI Dong\|hui. THE DISCUSSION OF THE ORIGIN OF SULFURETED HYDROGEN IN ASSOCIATED GAS OF DAQING PLACANTICLINE[J]. Natural Gas Geoscience, 2006, 17(1): 51 -54 .