Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (4): 483-487.doi: 10.11764/j.issn.1672-1926.2020.02.002

Previous Articles     Next Articles

Effect of different sampling devices and storage time on carbon, hydrogen and oxygen isotopes of non-hydrocarbon gases

Lan-tian XING1,2(),Zhong-ping LI2,Ping-zhong ZHANG1,Chen-jun WU2,Kai-wen WANG1,Can-can YAN2   

  1. 1.School of Earth Science and Gansu Key Laboratory of Mineral Resource in Western China, Lanzhou University, Lanzhou 730000, China
    2.Northwest Institute of Eco?Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
  • Received:2020-01-08 Revised:2020-02-13 Online:2020-04-10 Published:2020-04-26
  • Supported by:
    The National Science Foundation of China(41703013)

Abstract:

Taking carbon dioxide and hydrogen as examples, this paper discusses the influence of several commonly used gas collection devices on carbon, hydrogen and oxygen isotopes in the process of collecting and storing non-hydrocarbon gases. Specific sampling devices include high-pressure cylinders, foil bag, and glass bottles. Glass bottle sampling can be divided into distilled water storage and saturated salt water storage. The test results within 96 h show that different devices and storage time have little effect on the determination of carbon and hydrogen isotopes. As for the oxygen isotope, sampling devices without medium including high-pressure cylinder and foil bag show constant oxygen isotope in the first 5 h. However, accurate oxygen isotope ratio cannot be obtained by using glass bottle device, due to the distilled water and saturated salt waters medium affecting the testing accuracy. The experimental results can provide reference for researchers to collect non-hydrocarbon gas samples in the future studies.

Key words: Sampling devices, Storage time, Non-hydrocarbon gas, Carbon, hydrogen and oxygen isotopes

CLC Number: 

  • TE122.1

Table 1

The standard and test samples information"

样品类别样品编号文章中编号来源同位素参考值/‰(VPDB)
δ13Cδ18O
标样NIST-8562R-1NIST-3.76±0.07-8.43±0.44
NBS-18R-2NIST-5.01±0.04-23.2±0.1

碳/氧/氢

实验样品

钢瓶装S-1自行配置
铝箔纸袋装S-2
玻璃瓶装,饱和食盐水封S-3
玻璃瓶装,蒸馏水封S-4

Fig.1

The carbon and oxygen isotope values of various series"

Fig.2

The hydrogen isotope of different series"

Table 2

The carbon, oxygen, hydrogen isotope data of samples"

测试时间/hδ13C/‰(VPDB)*δ18O/‰(VPDB)δD/‰(VSMOW)
S-1S-2S-3S-4S-1S-2S-3S-4S-1S-2S-3S-4
1-23.80.03-23.80.04-23.70.05-23.60.05-38.60.05-38.60.06-38.60.06-38.50.04-237.31.3-241.62.8-239.11.5-242.04.8
3-23.60.07-23.90.03-23.50.04-23.50.07-37.90.05-38.20.06-33.90.05-29.10.07-240.22.3-239.83.4-240.12.8-240.63.6
5-23.60.05-23.80.02-23.60.03-23.40.05-37.90.06-38.00.03-30.30.05-23.60.06-241.43.6-242.63.5-241.93.1-241.94.3
7-23.50.05-23.90.03-23.50.05-23.40.03-37.40.05-37.70.03-26.80.05-19.20.07-239.73.1-240.72.6-239.83.3-237.73.8
9-23.40.02-23.80.04-23.50.05-23.40.04-37.80.04-37.60.05-24.20.07-16.40.05-241.62.8-242.53.6-241.54.2-243.52.9
11-23.60.03-23.80.02-23.50.05-23.40.04-36.70.04-37.20.04-21.50.06-14.40.07-243.93.3-239.73.3-238.73.7-236.93.5
24-23.70.04-23.70.03-23.60.02-23.50.03-37.30.06-36.00.05-13.50.03-10.90.04-239.02.5-243.13.9-235.54.1-230.64.4
48-23.70.03-23.80.03-23.60.03-23.50.04-38.40.06-33.80.05-10.80.06-10.70.05-244.56.2-237.34.7-241.23.2-236.43.5
72-23.70.02-23.80.01-23.70.02-23.50.03-37.90.05-32.40.03-10.50.06-10.60.04-242.13.3-230.33.2-232.84.2-228.32.9
96-23.70.02-23.70.02-23.70.03-23.40.04-34.70.05-31.30.03-10.40.08-10.60.05-238.94.1-235.72.9-237.53.9-238.73.5
1 朱岳年. 天然气中非烃组分地球化学研究进展[J]. 地球科学进展, 1994, 9(4):50-57.
ZHU Y N. Developments in geochemistry of non-hydrocarbon constituents of natural gas[J]. Advance in Earth Sciences, 1994, 9(4):50-57.
2 杜建国, 刘文汇, 孙明良. 广东三水盆地天然气非烃组分同位素地球化学[J]. 沉积学报, 1991, 9(1):97-105.
DU J G, LIU W H, SUN M L. Isotopic geochemical of nonhydrocarbons in natural gas from Sanshui Basin, Guangdong[J]. Acta Sedimentologica Sinica, 1991, 9(1):97-105.
3 刘全有, 金之钧, 高波, 等. 川东北地区酸性气体中CO2成因与TSR作用影响[J]. 地质学报, 2009, 83(8):1195-1202.
LIU Q Y, JIN Z J, GAO B, et al. Origin of sour gas in the northeastern Sichuan Basin and fate action of thermochemical sulfate reduction (TSR) to natural gas[J]. Acta Geologica Sinica, 2009, 83(8):1195-1202.
4 王杰, 刘文汇, 秦建中, 等. 苏北盆地黄桥CO2气田成因特征及成藏机制[J]. 天然气地球科学, 2008, 19(6):826-834.
WANG J, LIU W H, QIN J Z, et al. Reservoir forming mechanism and origin characteristics in Huangqiao carbon dioxide gas field, north Jiangsu Basin[J]. Natural Gas Geoscience, 2008, 19(6):826-834.
5 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发,2017,44(4):503-512.
LI J, LI Z S, WANG X B, et al. New indexes and chars for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development,2017,44(4):503-512.
6 张济宇. 气体样品的保存及其成分的变化[J]. 干旱环境检测, 1995,9(3):172-180.
ZHANG J Y. Gas sample reservation and its component variation [J]. Arid Environmental Monitoring, 1995, 9(3):172-180.
7 汪侃, 胡欣. 硫化氢气体监测中样品保存时间的探讨[J]. 甘肃环境研究与监测, 2003, 16(2):143-144.
WANG K, HU X. Discussion on sample preservation time in hydrogen sulfide gas monitoring[J]. Gansu Environmental Study and Monitoring, 2003, 16(2):143-144.
8 祁红娟, 余益军, 杨帆, 等. 全玻璃针筒注射器保存空气中甲烷和总烃的影响因素[J]. 中国环境监测, 2018, 34(3):100-103.
QI H J, YU Y J, YANG F, et al. Effects on the gas chromatography determination of methane and total hydrocarbon samples stored in glass injectors[J]. Environmental Monitoring in China, 2018, 34(3):100-103.
9 秦胜飞, 宋岩, 唐修义,等. 流动的地下水对煤层含气性的破坏机理[J]. 科学通报,2005,50(增刊):99-104.
QIN S F, SONG Y, TANG X Y, et al. The groundwater flow of coal seam gas containing the destructive mechanism[J]. Chinese Science Bulletin,2005,50 (supplement):99-104.
10 郝石生, 张振英. 天然气在地层水中的溶解度变化特征及地质意义[J]. 石油学报, 1993, 14(2):12-22.
HAO S S, ZHANG Z Y. The characteristic of the solubility of natural gas in formation waters and it’s geological significance[J]. Acta Petrolei Sinica, 1993, 14(2):12-22.
11 付晓泰, 王振平, 卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学: B辑, 1996, 26(2):124-130.
FU X T, WANG Z P, LU S F. Mechanisms and solubility equations of gas dissolving in water[J]. Science in China: Series B, 1996, 26(2):124-130.
12 王青, 张枝焕, 钟宁宁, 等. 水溶—释放作用对气藏形成的影响——以克拉2气田为例[J]. 天然气工业,2004, 24(6):18-21.
WANG Q, ZHANG Z H, ZHONG N N, et al. Influence of solution-releasing on gas reservoir foramtion:Taking Kela-2 gas field as an example[J]. Natural Gas Industry,2004, 24(6):18-21.
13 李梅, 李谦, 张秋茶, 等. 库车前陆冲断带天然气具有深埋水溶气的特点[J]. 天然气地球科学,2003,14(5):366-370.
Li M, Li Q, Zhang Q C, et al. Deep water-soluble natural gas at the thrust-uplift belt in Kuche foreland basin[J]. Natural Gas Geoscience,2003, 14(5):366-370.
14 李静, 薛冬梅, 王义东, 等. 稳定同位素动力学分馏模型研究进展[J]. 矿物学报,2020, 40:1-8.
LI J, XUE D M, WANG Y D, et al. Research progress on stable isotope kinetic fractionation model[J]. Acta Mineralogica Sinica. 2020,40:1-8.
15 彭人勇, 徐嘉男. 二氧化碳在盐碱水中溶解及溢出的实验研究[J]. 青岛科技大学学报:自然科学版,2019,40(2):20-23.
PENG R Y, XU J N. Experiment study on dissolution and spillover of CO2 in saline-alkaline water[J]. Journal of Qingdao University of Science and Technology:Natural Science Edition,2019,40(2):20-23.
16 SAMANI N N, MIFORUGHY S M, SAFARI H, et al. Solubility of hydrocarbon and non-hydrocarbon gases in aqueous electrolyte solutions: A reliable computational strategy[J]. Fuel,2019(241):1026-1035.
[1] Wang Qiang, Zhang Da-yong, Wang Jie, Tao Cheng, Tenger, Liu Wen-hui. Hydrocarbon and non-hydrocarbon characteristics for comprehensive identification about kerogen pyrolysis gas and oil cracked gas [J]. Natural Gas Geoscience, 2018, 29(9): 1231-1239.
[2] CHEN Jian-fa;TANG You-jun;XU Li-heng; LI Ling;MA Guang-yu;ZHAO Xing-qi. Comparison of Geochemical Characteristics of Carboniferous andPermian-Triassic Natural Gas in Northeast Shichuan [J]. Natural Gas Geoscience, 2008, 19(06): 741-747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!