Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (1): 93-99.doi: 10.11764/j.issn.1672-1926.2019.10.011

Previous Articles     Next Articles

Constraints of methane absorbability in the Upper Permian Longtan Formation of Well DC-5 in Guxu mine area of southern Sichuan Coalfield

Yuan BAO1,2(),Chao AN1,Yi-wen JU3(),Zhong-shan YIN4,Jian-long XIONG4,Wen-bo WANG1   

  1. 1.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
    2.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
    3.Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Geological Engineering Investigation and Design Institute, Sichuan Coalfield Geological Bureau, Chengdu 610072, China
  • Received:2019-08-24 Revised:2019-10-21 Online:2020-01-10 Published:2019-11-06
  • Contact: Yi-wen JU E-mail:y.bao@foxmail.com;juyw03@163.com
  • Supported by:
    the National Natural Science Foundation of China(41972183);The Science and Technology Support Program Project of Sichuan Province, China(2016JZ0037);The Ph.D Start-up Fund Project of Xi’an University of Science and Technology(2018QDJ001)

Abstract:

Research on the absorbability of coalbed methane is of importance for guiding the exploration and exploitation of coalbed methane and revealing the storage mechanism of coalbed methane. This study investigates the coal quality and methane adsorption capacity at different depth of the Longtan Formation in the Guxu mine area of southern Sichuan Coalfield by drilling sampling, coal rock and coal analysis, and methane isothermal adsorption testing. The main geological factors affecting methane adsorption capacity are analyzed using a multiple linear stepwise regression method. Results show that the coal rank of the Longtan Formation in the Guxu mine area has reached the anthracite stage (Ro, max ranges from 2.83% to 3.22%), which belongs to high-rank coals. Vitrinite is the main component of coal maceral and followed by inertinite without exinite. Clay mineral is the main component of the inorganic mineral. The difference of moisture and volatile matter contents between coal seams in the Longtan Formation is small, while a large difference between ash and fixed carbon contents is observed. Langmuir volume (VL) of different coal seams ranges from 11.39 to 25.06 m3/t. Fixed carbon content is the main factor affecting the methane adsorption capacity of the coal seams in the Guxu mine area. The content of fixed carbon is positively correlated with the methane adsorption quantity.

Key words: Methane adsorption, Constraint, Longtan Formation, Guxu mine area, South Sichuan Coalfield

CLC Number: 

  • TE122.2

Fig.1

Geographic position and tectonic distribution map in the study area (modified from Ref.[17])"

Fig.2

Sampling position and stratigraphic column of Well DC-5 in Guxu mine area"

Table 1

Result of coal maceral analysis"

样品编号采样埋深 /m

镜质体反射率

RO,max)/%

煤岩显微组分/%煤体结构类型
镜质组壳质组惰质组无机矿物(黏土类)
C14726.92.9642.50.09.847.7(41.7)糜棱煤
C16741.23.1473.90.015.810.3(6.6)碎裂煤
C17-1746.62.9476.90.09.613.5(8.6)碎裂煤
C17-2747.83.1646.20.047.86.0(3.2)碎裂煤
C23758.32.9270.30.09.420.3(12.0)糜棱煤
C24763.73.2274.10.010.315.6(4.7)碎裂煤
C25-1775.73.0841.60.011.447.0(35.1)糜棱煤
C25-3777.42.8363.20.015.721.1(14.1)碎裂煤
C25-4779.53.1369.00.011.319.7(12.5)碎裂煤
C11a/2.6456.20.017.426.4(/)/
C17 a/2.6672.80.06.221.0(/)/
C19 a/2.6467.70.025.46.9(/)/
C23 a/2.6168.30.018.213.5(/)/
C25 a/2.6371.10.017.311.6(/)/

Table 2

Result of coal proximate analysis"

样品编号原煤工业分析/%

发热量/

(MJ/kg)

全硫/%
MadAdVdFCd
C142.2050.859.4337.5214.330.14
C161.7710.466.3881.3930.650.22
C17-12.1628.037.9761.8423.020.37
C17-22.1912.046.3179.46//
C232.4032.898.3356.3821.130.59
C241.8228.126.9563.1123.660.38
C25-12.1144.158.4145.3317.083.64
C25-32.2612.706.9478.10//
C25-41.8130.848.1059.25//
C13a0.48~0.920.70?(37)17.13~38.6926.44(40)6.81~9.358.08(37)60.79~68.4364.6121.07~29.1825.68(37)0.31~3.262.66(38)
C14 a0.67~1.480.95(42)14.33~39.1524.04(46)6.43~8.427.61(40)52.31~67.9662.8120.53~30.1126.39(38)0.19~1.860.85(44)
C16 a0.64~1.400.95(14)16.52~35.3823.11(14)6.23~7.536.73(14)44.39~77.4760.3120.74~29.6725.40(14)0.16~1.670.57(13)
C17 a0.66~1.300.91(37)15.44~36.8423.93(41)5.98~10.817.96(37)43.23~73.7959.3920.87~29.6926.33(37)0.18~1.620.94(41)
C23 a0.42~1.230.77(47)10.75~39.2222.60(47)6.44~8.777.77(47)6.25~67.6162.5719.84~31.6926.48(47)0.54~3.862.74(46)
C24 a0.34~1.340.77(37)12.37~39.9024.73(37)5.93~8.447.40(35)66.22~70.7568.0220.25~31.7327.41(35)0.93~7.942.52(35)
C25 a0.33~0.830.55(39)9.47~38.2418.26(43)6.78~12.108.85(38)54.91~76.9764.1520.31~32.1828.44(39)1.49~7.594.47(42)

Fig.3

Methane isothermal adsorption curve of coal of Well DC-5"

Table 3

Data of methane isothermal adsorption and Langmuir parameters based on equilibrium moisture basis"

样品编号Langmuir模型
VL/(m3/t)PL/MPa
C1411.391.22
C1621.790.97
C17-118.251.01
C17-225.061.05
C2316.181.06
C2421.881.17
C25-116.031.15
C25-324.691.41
C25-421.981.04

Table 4

Results of Pearson correlation between different factors"

采样埋深镜质体反射率镜质组惰质组无机矿物黏土类煤体结构类型MadAdVdFCd
相关性0.4180.3080.3320.551-0.773-0.785-0.852-0.329-0.889-0.8950.895
显著性0.2620.420.3830.1240.0150.0120.0040.3870.0010.0010.001
是否显著显著显著显著显著显著显著

Table 5

Results of coefficients of multiple linear regression equation and 95% confidence interval"

非标准化系数tSig.B的95.0%置信区间
B标准误差下限上限
(常量)3.0163.2210.9360.380-4.60010.632
固定碳含量0.2670.0505.3130.0010.1480.386

Fig.4

Relationship between fixed carbon content and Langmuir volume"

Fig.5

Relationship between fixed carbon content and microspore volume[21]"

1 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
FU X H, QIN Y, WEI C T. Coalbed Methane Geology[M]. Xuzhou: Chinese University of Mining & Technology Press, 2007.
2 BAO Y, WEI C T, WANG C Y, et al. Geochemical characteristics and identification of thermogenic CBM generated during the low and middle coalification stages[J]. Geochemical Journal, 2013, 47(4): 451-458.
3 陈春琳, 林大杨. 等温吸附曲线方法在煤层气可采资源量估算中的应用[J]. 中国矿业大学学报, 2005, 34(5): 679-682.
CHEN C L, LIN D Y. Application of isothermal curves in estimating minable resource of coalbed methane[J]. Journal of Chinese University of Mining & Technology, 2005, 34(5): 679-682.
4 姚艳斌, 刘大锰. 华北重点矿区煤储层吸附特征及其影响因素[J]. 中国矿业大学学报, 2007, 36(3): 308-314.
YAO Y B, LIU D M. Adsorption characteristics of coal reservoirs in North China and its influencing factors[J]. Journal of Chinese University of Mining & Technology, 2007, 36(3): 308-314.
5 李振涛, 姚艳斌, 周鸿璞, 等. 煤岩显微组成对甲烷吸附能力的影响研究[J]. 煤炭科学技术, 2012, 40(8): 125-128.
LI Z T, YAO Y B, ZHOU H P, et al. Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology, 2012, 40(8): 125-128.
6 崔永君, 李育辉, 张群, 等. 煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J]. 科学通报, 2005, 50(z1): 76-81.
CUI Y J, LI Y H, ZHANG Q, et al. Characteristic curve of coal adsorption of methane and application in coalbed gas storage[J]. Chinese Science Bulletin, 2005, 50(z1): 76-81.
7 CROSDALE P J, BEAMISH B B, VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology, 1998, 35: 147-158.
8 LAXMINARAYANA C, CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology, 1999, 40: 309-325.
9 CHATTARAJ S, MOHANTY D, KUMAR T, et al. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane: A review[J]. Journal of Unconventional Oil and Gas Resources, 2016, 16: 14-33.
10 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业, 2005, 25(1): 19-21.
SU X B, ZHANG L P, LIN X Y. Influence of coal rank on coal and sorption capacity[J]. Natural Gas Industry, 2005, 25(1): 19-21.
11 钟玲文. 煤的吸附性能及影响因素[J]. 地球科学: 中国地质大学学报, 2004, 29(3): 327-332.
ZHONG L W. Adsorptive capacity of coals and its affecting factors[J]. Journal of China University of Geosciences: Earth Science, 2004, 29(3): 327-332.
12 秦勇, 傅雪海, 叶建平, 等. 中国煤储层岩石物理学因素控气特征及机理[J]. 中国矿业大学学报, 1999, 28(1): 14-19.
QIN Y, FU X H, YE J P, et al. Geological controls and their mechanisms of coal-reservoir petrography and physics of coalbed methane occurrence in China[J]. Journal of Chinese University of Mining & Technology, 1999, 28(1): 14-19.
13 苏现波, 刘国伟, 郭盛强, 等. 甲烷在煤表面的吸附势与煤阶的关系[J]. 中国煤层气, 2006, 3(3): 21-23.
SU X B, LIU G W, GUO S Q. et al. Relationship of coalbed methane adsorption and coal rank[J]. China Coalbed Methane, 2006, 3(3): 21-23.
14 马东民, 温兴宏. 无烟煤对甲烷等温吸附解吸特性实验研究[J]. 煤田地质与勘探, 2007,35(2): 25-27.
MA D M, WEN X H. Study on adsorption/desorption character of anthracite in CH4 isotherm experiments[J]. Coal Geology & Exploration, 2007,35(2): 25-27.
15 魏迎春, 项歆璇, 王安民, 等.不同矿化度水对煤储层吸附性能的影响[J]. 煤炭学报, 2019,44(9):2833-2839.
WEI Y C, XIANG X X, WANG A M, et al. The influence of water with different salinity on the adsorption performance of coal reservoir[J]. Journal of China Coal Society,2019,44(9):2833-2839.
16 尹中山. 川南煤田古叙矿区煤层气勘探选层的探讨[J]. 中国煤炭地质, 2009, 21(2): 24-27.
YIN Z S. A discussion on CBM exploration target in Guxu mining area, south Sichuan Coalfield[J]. Coal Geology of China, 2009, 21(2): 24-27.
17 朱志敏, 陈岑, 尹中山. 川南煤田晚二叠世含煤系统分析[J]. 煤炭科学技术, 2010, 38(7): 104-108.
ZHU Z M, CHEN C, YIN Z S. Analysis on Upper Permian coal system in Chuannan Coalfield[J]. Coal Science and Technology, 2010, 38(7): 104-108.
18 门玉澎, 陈小炜, 戚明辉, 等. 川南古叙矿区煤层气资源有利区优选[J]. 沉积与特提斯地质, 2019, 39(1): 68-74.
MEN Y P, CHEN X W, QI M H, et al. Assessment of the favourable areas of the coalbed gas resources in the Gulin-Xuyong mining district in southern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 68-74.
19 LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
20 四川煤田地质局一三五队. 四川省古蔺县川南煤田古叙矿区大村勘探区普查地质报告[R]. 成都: 四川省煤田地质局, 1998.
Team of Sichuan Coalfield Geology Bureau. Geological Survey Report of Dacun Exploration Area, Guxu Mining Area, South Sichuan Coalfield, County Gulin, Sichuan Province[R]. Chengdu: Sichuan Coalfield Geology Bureau, 1998.
21 赵锦程. 沁南地区高阶煤全尺度孔隙结构表征及流体差异流动性[D]. 徐州:中国矿业大学, 2017.
ZHAO J C. Full Scale Pore Structure of High Rank Coals in the South of Qinshui Basin and its Flow Difference[D]. Xuzhou:China University of Mining and Technology, 2017.
22 刘胖. 中高阶烟煤对甲烷的吸附/解吸特征研究[D].西安:西安科技大学, 2010.
LIU P. A Research on the Methane Adsorption/Desorption in the Mid and High Rank Bituminous[D]. Xi’an:Xi’an University of Science and Technology, 2010.
23 李夏伟, 刘大锰, 蔡益栋,等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘, 2018,25(4): 237-244.
LI X W, LIU D M, CAI Y D, et al. Moisture content characteristics of high rank coal reservoir and its influence on adsorption capacity[J]. Earth Science Frontiers, 2018, 25(4): 237-244.
24 韩思杰, 桑树勋, 梁晶晶. 沁水盆地南部中高阶煤高压甲烷吸附行为[J]. 煤田地质与勘探, 2018, 46(5): 10-18, 25.
HAN S J, SANG S X, LIANG J J. High pressure methane adsorption of medium and high-rank coal in southern Qinshui Basin[J].Coal Geology & Exploration,2018,46(5):10-18, 25.
25 何俊. 煤岩吸附能力实验及影响因素研究[D]. 秦皇岛:燕山大学, 2018.
HE J. Experimental Research on the Adsorption Capacity of Coal and Its Influence Factors[D]. Qinhuangdao: Yanshan University, 2018.
[1] Liu Hu, Cao Tao-tao, Qi Ming-hui, Wang Dong-qiang, Deng Mo, Cao Qing-gu, Cheng Bin, Liao Ze-wen. Reservoir characteristics of Longtan Formation shale gas in Huayingshan area,eastern Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(1): 11-26.
[2] HUANG Bao-jia,HUANG Hao,JIN Qiu-yue,ZHOU Gang,ZHAO XING-bin. Characterization of Pores and Methane Sorption Capacity of Permian Shales in Southeast Anhui,Lower Yangtze Region [J]. Natural Gas Geoscience, 2015, 26(8): 1516-1524.
[3] ZHANG Ji-zhen,LI Xian-qing,GUO Man,DONG Ze-liang,WANG Zhe,FU Qing-hua,WANG Fei-yu. Microscopic Pore Characteristics and Its Influence Factors of the Permian Longtan Formation Shales in the Southern Sichuan Basin [J]. Natural Gas Geoscience, 2015, 26(8): 1571-1578.
[4] WEI Zhi-fu,WANG Yong-li,WU Chen-jun,WU Bao-xiang,SUN Ze-peng,LI Sheng-xi,WEI Wei. Geochemical Characteristics of Source Rock from Upper Permian Longtan Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2015, 26(8): 1613-1618.
[5] LIU Zheng-wen,DANG Qing-ning,DONG Rui-xia,LI Hao,ZHAO Rui-rui,GUAN Bao-zhu. Seismic Imaging Technique and Application of Cambrian Dolomite Rock in Tarim Basin: A case of Middle-Lower Cambrian Layers of Yingmai 32 Area [J]. Natural Gas Geoscience, 2015, 26(7): 1334-1343.
[6] ZHONG Jia-ai,CHEN Guo-jun,Lv Cheng-fu,YANG Wei,XU Yong,YANG Shuang,XUE Lian-hua. Experimental Study of the Impact on Methane Adsorption Capacity of Continental Shales with Thermal Evolution [J]. Natural Gas Geoscience, 2015, 26(7): 1414-1421.
[7] LIU Chao,XIE Chuan-li,LI Yu-peng,WANG Gui-wen,WANG Qiang. The Principle and Method to Enhance Geological Constraint by Inserting Virtual Wells in Facies Controlling Stochastic Reservoir Modeling [J]. Natural Gas Geoscience, 2015, 26(4): 616-624.
[8] JI Li-ming,MA Xiang-xian,XIA Yan-qing,QIU Jun-li. Relationship between Methane Adsorption Capacity of Clay Minerals and Micropore Volume [J]. Natural Gas Geoscience, 2014, 25(2): 141-152.
[9] YANG Rui-zhao, LI Song-nan, WANG Yuan-yuan, LI Yang, JIE Ming-li, SONG Xiang-hui. Application of Inversion without Well Constraint to Hydrate Forecasting in Shenhu Area [J]. Natural Gas Geoscience, 2012, 23(4): 784-790.
[10] JI Li-Ming, LUO Peng. Effect of Sample Size on Volumetric Determination of Methane Adsorption in Clay Minerals [J]. Natural Gas Geoscience, 2012, 23(3): 535-540.
[11] WANG Xiao, HE Zhen-Hua, WANG Shu-Jiang, FENG Hui-Yuan, WANG Xi-Lin. Technology of Static Correction for Multi-information Constrained Tomographic Inversion and Its Application [J]. Natural Gas Geoscience, 2010, 21(2): 316-320.
[12] WANG Xiao-lin ;HU Wen-xuan ; ZHANG Jun-tao ;QIAN Yi-xiong, ZHU JING-quan ; WU Shi-qiang . Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin [J]. Natural Gas Geoscience, 2008, 19(3): 320-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[5] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[6] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[7] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[8] DU Le-tian. INTRODUCTION AND ANALYSIS OF FOREIGN NATURAL GAS GEOSCIENCE STUDIES BASED ON SO KOLOV'S DATA[J]. Natural Gas Geoscience, 2007, 18(1): 1 -18 .
[9] . THERMAL SIMULATION OF ORDOVICIAN SOURCE ROCK OF FORELANDBASIN IN  WESTERN ORDOS[J]. Natural Gas Geoscience, 2006, 17(2): 187 -191 .
[10] LIU Quan-you;Liu Wen-hui;Krooss B M;WANG Wan-chun;DAI Jin-xing. ADVANCES IN NITROGEN GEOCHEMISTRY OF NATURAL GAS[J]. Natural Gas Geoscience, 2006, 17(1): 119 -124 .