Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (1): 47-60.doi: 10.11764/j.issn.1672-1926.2019.08.005

Previous Articles     Next Articles

The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China

An-lai MA1(),Hui-li LI1,Jie-hao LI2,Xiao-peng GAO1,Fan WANG3,Yao YAO1,Fan FENG1   

  1. 1.Petroleum Exploration & Production Research Institute, Sinopec, Beijing 100083, China
    2.China University of Geoscience (Beijing), Beijing 100083, China
    3.China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2019-07-05 Revised:2019-08-17 Online:2020-01-10 Published:2020-01-09
  • Supported by:
    National Science Foundation of China(41772153);Sinopec Ministry of Science and Technology(P16069)

Abstract:

The Middle-Upper Ordovician source rocks developed in six outcrop profiles in Keping area, Tarim Basin, NW China were analyzed using organic geochemical scanning method. Source rocks of Middle-Upper Ordovician Salgan Formation developed in Dawangou, Kamatikan and Tonggusibulong outcrop profiles, with most TOC value greater than 1.0%. Whereas source rocks of the Upper Ordovician Yingan Formation only developed in the Dawangou outcrop profile. Combined with the analysis results of Lower Cambrian Yuertusi Formation developed in Xiaoerbulake, Sugaitebulake and West Yuti outcrops profiles, the source rocks of Yuertusi Formation, Salgan Formation and Yingan Foramtion showed similar molecular geochemical characteristics, with lower Pr/Ph value, C23 greater than C21 tricyclic terpane, higher gamacerane and higher C28 steranes content. The similarity in molecular compounds of Cambrian to Ordovician source rocks in Keping area may be a result of the high maturity. In the relative content of C27-C29 steranes, the most marine oils with C28 sterane lower than 25% showed great difference with that of the source rocks of Cambrian to Ordovician source rocks in Keping area. In the fraction carbon isotopes, the source rocks of the Lower Cambrian Yuertusi Formation have lower carbon isotopes, compared with that of the Middle-Upper source rocks. Especially in kerogen carbon isotopes, Lower Cambrian Yuertusi Formation is 5‰ lower than that of Middle-Upper Ordocivian source rocks. Overall,the carbon isotopic fractionation of saturate, bitumen, aromatic fraction, non-hydrocarbon fraction, asphaltenes and kerogen is small in source rocks from Middle-Upper Ordovican Salgan and Yingan Formation in Keping area. The carbon isotopes of kerogen of source rocks can be used as a parameter for oil-source correlation excluding the TSR of the oil reservoirs.

Key words: Middle-Upper Ordovician, Salgan Formation, Yingan Formation, Molecular marker, Carbon isotope, Oil-source correlation, Keping area

CLC Number: 

  • TE122.1+13

Fig.1

The location of outcrops profiles of Middle-Upper Ordovician source rocks in Keping area, Tarim Basin"

Fig.2

The TOC and pyrolysis data of source rocks from Middle-Upper Ordovician Salgan Formation in Dawangou outcrop profile"

Fig.3

The TOC and pyrolysis data of source rocks from Middle-Upper Ordovician Salgan Formation in Kamatikan outcrop profile"

Table 1

The organic matter abundance of source rocks of Salgan Formation from Upper Ordovician in Keping area"

剖面厚度/m岩性样品数TOC/%Pg/%Tmax/℃IH/(mg/gTOC)
大湾沟14.6页岩、泥岩28(0.04~3.62)/1.83(0.02~6.72)/2.94(444~518)/460(1~181)/116
灰岩、泥灰岩13(0.01~1.20)/0.15(0.03~2.74)/0.33(384~515)/461(63~221)/118
喀马提坎15.6页岩、泥岩15(0.19~3.43)/1.40(0.08~2.28)/0.66(442~476)/454(16~62)/37
灰岩、泥灰岩5(0.01~0.48)/0.15(0.03~0.28)/0.10(439~469)/453(41~154)/91
通古斯布隆10.6页岩、泥岩11(0.69~2.85)/1.66(0.23~1.08)/0.64(438~445)/441(11~59)/39
灰岩10(0.01~0.05)/0.02(0.01~0.04)/0.02(449~475)/463(32~156)/81
阿恰西一沟7.5灰岩16(0.01~0.02)/0.02(0.00~0.03)/0.02(445~500)/465(0~322)/83

Fig.4

The TOC and pyrolysis data of source rocks from Upper Ordovician Yingan Formation in Dawangou outcrop profile"

Table 2

The organic matter abundance of source rocks of Yingan Formation from Upper Ordovician in Keping area"

剖面厚度/m岩性样品数TOC/%Pg/%Tmax/℃IH/(mg/gTOC)
大湾沟29页岩、泥岩16(0.44~1.29)/0.67(0.41~1.54)/1.02(443~455)/450(50~133)/93
灰岩、泥灰岩9(0.14~0.54)/0.31(0.03~0.91)/0.37(339~455)/438(10~100)/60

羊吉坎

(阿恰西二沟)

169页岩、泥岩13(0.07~0.34)/0.22(0.03~0.15)/0.09(465~500)/489(15~41)/28
灰岩、泥灰岩12(0.02~0.24)/0.12(0.01~0.10)/0.04(434~504)/479(8~56)/28
阿恰西五沟14.7页岩、泥岩19(0.14~0.38)/0.27(0.02~0.06)/0.04(480~544)/503(9~20)/13
灰岩3(0.05~0.09)/0.06(0.02~0.07)/0.05(489~513)/503(22~99)/66

Fig.5

The GC chromatograms, mass chromatograms of terpanes and steranes of saturates from Cambrian and Ordovician source rocks from Keping outcrops profiles"

Fig.6

The relationship between Pr/nC17 and Ph/nC18 ratios in Cambrian and Ordovician source rocks from outcrops profiles in Keping area"

Fig.7

The relationship between C21TT/C23TT and C24Te/C26TT ratios in Cambrian and Ordovician source rocks from outcrops profiles in Keping area"

Fig.8

The relationship between C21TT/C23TT and G/C30H ratios in Cambrian to Ordovician source rocks from outcrops profiles in Keping area"

Fig.9

The ternary plots showing the relative distribution of C27-C29 regular steranes in Cambrian to Ordovician source rocks from outcrops profiles in Keping area"

Fig.10

Plot of DBT/P versus Pr/Ph value in Cambrian to Ordovician source rocks from outcrops profiles in Keping area (plate according to Ref.[30])"

Fig.11

The carbon isotopes distribution curves of bitumen A, saturated fraction, aromatic fraction, non-hydrocarbon fraction, asphaletenes fraction and kerogen in source rocks from different ages in Tarim Basin"

1 郝继鹏. 塔里木盆地柯坪地区下古生界碳酸盐岩生储油特征及油源对比[J]. 新疆石油地质, 1988,9(4):14-21.
HAO J P. Oil generating and conserving characteristics and source correlation of the Lower Paleozoic carbonates in the area of Keping Tarim Basin[J]. Xinjiang Petroleum Geology, 1988, 9(4):14-21.
2 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004.
ZHANG S C, LIANG D G, ZHANG B M, et al. The Generation of Marine Oil and Gas in the Tarim Basin[M]. Beijing: Petroleum Industry Press, 2004.
3 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J].地学前缘, 2005, 12(3): 39-48.
ZHANG S C, ZHANG B M, BIAN L Z, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
4 张水昌, 王飞宇, 张保民, 等. 塔里木盆地中上奥陶统油源层地球化学研究[J]. 石油学报, 2000, 21(6): 23-28.
ZHANG S C, WANG F Y, ZHANG B M, et al. Middle-Upper Ordovician source rock geochemistry of the Tarim Basin[J]. Acta Petrolei Sinica, 2000, 21(6): 23-28.
5 张水昌, 梁狄刚, 黎茂稳, 等. 分子化石与塔里木盆地油源对比[J]. 科学通报, 2002,47(s1): 16-21.
ZHANG S C, LIANG D G, LI M W, et al. Molecular fossils and oil-source rock correlation in Tarim Basin, NW China[J]. Chinese Science Bulletin, 2002, 47(s1): 20-27.
6 马安来, 金之钧, 张水昌, 等. 塔里木盆地寒武—奥陶系烃源岩的分子地球化学特征[J]. 地球化学, 2006, 35(6): 593-601.
MA A L, JIN Z J, ZHANG S C, et al. Molecular geochemical characteristics of Cambrian-Ordovician source rocks in Tarim Basin, NW China[J]. Geochimica, 2006, 35(6): 593-601.
7 王庆涛, 江林香, 刘奇宝, 等. 柯坪剖面中上奥陶统烃源岩的催化加氢裂解产物特征及其地质意义[J]. 地球化学, 2012, 41(5): 415-424.
WANG Q T, JIANG L X, LIU Q B, et al. Catalytic hydropyrolysis for kerogens of middle and Upper Ordovician source rocks in Keping section, Tarim Basin, Northwestern China[J]. Geochimica, 2012, 41(5): 415-424.
8 王庆涛, 卢鸿, 高黎惠, 等. 高成熟萨尔干页岩热模拟产气的地球化学特征[J]. 煤炭学报,2013, 38(5): 754-759.
WANG Q T, LU H, GAO L H, et al. Geochemical characterization of thermogenic gas during the simulation experiments of the mature Salgan shale[J]. Journal of China Coal Society, 2013, 38(5): 754-759.
9 王飞宇, 杜治利, 张宝民, 等. 柯坪剖面中上奥陶统萨尔干组黑色页岩地球化学特征[J]. 新疆石油地质, 2008, 29(6): 687-689.
WANG F Y, DU Z L, ZHANG B M, et al. Geochemistry of Salgan black shales of Middle-Upper Ordovician in Keping outcrop, Tarim Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 687-689.
10 高志勇, 张水昌, 刘烨, 等. 新疆柯坪大湾沟剖面中-上奥陶统烃源岩高频海平面变化与有机质的关系[J]. 石油学报, 2012, 33(2): 232-240.
GAO Z Y, ZHANG S C, LIU Y, et al. Relationship between high-frequency sea-level changes and organic matter of Middle-Upper Ordovician marine source rocks from the Dawangou section in the Keping area, Xinjiang[J]. Acta Petrolei Sinica, 2012,33(2): 232-240.
11 廖晓, 王震亮, 余朱宇, 等. 塔里木盆地柯坪地区奥陶系高丰度海相烃源岩成因探讨[J]. 地质科技情报, 2018, 37(2): 59-64.
LIAO X, WANG Z L, YU Z Y, et al. Genesis of Ordovician marine source rocks of high organic abundance in Keping region, Tarim Basin[J]. Geological Science and Technology Information, 2018, 37(2): 59-64.
12 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系—奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发,2012, 39(3):285-294.
ZHANG S C, GAO Z Y, LI J J, et al. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration & Development, 2012, 39(3): 285-294.
13 高志勇, 张水昌, 李建军, 等. 塔里木盆地西部中上奥陶统萨尔干页岩与印干页岩的空间展布与沉积环境[J]. 古地理学报, 2010, 12(5): 599-608.
GAO Z Y, ZHANG S C, LI J J, et al. Distribution and sedimentary environments of Salgan and Yingan shales of the Middle-Upper Ordovician in western Tarim Basin[J]. Journal of Paleogeography, 2010, 12(5): 599-608.
14 CAI C F, LI K K, MA A L, et al. Distinguishing Cambrian from upper Ordovician source rocks: Evidence from sulfur isotopes and biomarkers in the Tarim Basin[J]. Organic Geochemistry, 2009, 40: 755-768.
15 CAI C F, ZHANG C M, WORDEN R H, et al. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 2015,83-84:140-152.
16 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7): 1224-1232.
PAN W Q, CHEN Y Q, XIONG Y X, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1224-1232.
17 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21.
ZHU G Y, CHEN F R, CHEN Z Y, et al. Discovery and basic characteristics of high-quality source rocks found in the Yuertusi Formation of the Cambrian in Tarim Basin, China[J]. Natural Gas Geoscience, 2016, 27(1):8-21.
18 ZHU G Y, CHEN F R, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
19 周志毅. 塔里木盆地各纪地层[M]. 北京:科学出版社, 2001:1-335.
ZHOU Z Y. Stratigraphy of the Tarim Basin[M]. Beijing: Science Press, 2001:1-335.
20 范善发, 周中毅. 塔里木盆地古地温与油气[M].北京:科学出版社, 1990.
FAN S F, ZHOU Z Y. The Paleo-geotemperature and Petroleum in The Tarim Basin[M]. Beijing: Science Press, 1990.
21 陈旭. 论笔石的深度分带[J]. 古生物学报, 1990,29(5):507-526.
CHEN X. Graptolite depth zonation[J]. Acta Paleontologica Sinice,1990, 29(5):507-526.
22 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异与成因[J]. 岩石学报, 2017, 33(6):1893-1918.
YANG Z Y, LUO P, LIU B, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 2017, 33(6):1893-1918.
23 杨福林, 王铁冠, 李美俊. 塔里木盆地台盆区寒武系烃源岩地球化学特征[J]. 天然气地球科学, 2016, 27(5): 861-872.
YANG F L, WANG T G, LI M J. Geochemical study of Cambrian source rocks in the cratonic area of Tarim Basin, NW China[J]. Natural Gas Geoscience, 2016, 27(5): 861-872.
24 杨福林, 云露, 王铁冠, 等. 塔里木盆地寒武系源岩地化特征及与典型海相原油对比[J].石油与天然气地质, 2017, 38(5): 851-861.
YANG F L, YUN L, WANG T G, et al. Geochemical characteristics of the Cambrian source rocks in the Tarim Basin and oil-source correlation with typical marine crude oil[J]. Oil & Gas Geology, 2017, 38(5):851-861.
25 包建平, 斯春松, 蒋兴超, 等. 黔北坳陷小草坝古油藏储层沥青来源与成因研究[J]. 地球化学, 2016, 45(3):315-328.
BAO J P, SI C S, JIANG X C, et al. Study on origin and source of solid bitumen from Xiaocaoba Paleo-reservoir in the northern Guizhou Depression[J]. Geochimica, 2016, 45(3): 315-328.
26 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1): 1-15.
LIANG D G, GUOT L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 2): Geochemical characteristics of four suits of regional marine source rocks, south China[J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15.
27 GEORGE S C. Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland[J]. Organic Geochemistry, 1992, 18(5):705-723.
28 PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide (Volume 2): Biomarkers and Isotopes in Petroleum Exploration and Earth History[M]. Cambridge, United Kingdom:Cambridge University Press, 2005.
29 CONNAN J, CASON A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44: 1-23.
30 HUGHES W B, HOLBA A G, DZOU I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
31 GROSJEAN E, LOVE G D, STALVIES C, et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009, 40:87-110.
32 KELLEY A E, LOVE G D, ZUMBERGE J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry, 2011, 42: 640-654.
33 马安来, 金之钧, 王毅. 塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向[J]. 石油与天然气地质, 2006, 27(3): 356-362.
MA A L, JIN Z J, WANG Y. Problems of oil-source correlation for marine reservoirs in Paleozoic craton area in Tarim Basin and future direction of research[J]. Oil & Gas Geology, 2006, 27(3): 356-362.
34 包建平, 朱翠山, 王志峰. 塔里木盆地寒武系—下奥陶统烃源岩的端元油[J]. 石油勘探与开发, 2018, 45(6): 1103-1114.
BAO J P, ZHU C S, WANG Z F. Typical end-member oil derived from lower Ordovician-Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2018, 45(6): 1103-1114.
35 DZOU L I P, NONLE R A, SENFTLE J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates[J].Organic Geochemistry,1995, 23(7):681-697.
36 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1): 35-44
ZHU Y M, GU S X, LI Y, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan Basin[J]. Geochimica, 2012, 41(1): 41(1): 35-44.
37 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2):8-14.
LIANG D G, CHEN J P. Oil source correlations for high and over matured marine source rocks in South China[J]. Petroleum Exploration & Development, 2005, 32(2): 8-14.
38 ZHANG S C, SU J, WANG X M, et al. Geochemical of Paleozoic marine petroleum from Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42:1394-1410.
39 HUANG H P, ZHANG S C, SU J. Paleozoic oil-source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016, 94: 32-46.
40 CLAYPOOL G E, MANCINI E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, Southwestern Alabama[J]. AAPG Bulletin, 1989, 73(7):904-924.
41 王昭明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系岩下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.
WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.
42 ZHU G Y, HUANG H P, WANG H T. Geochemical significance of discovery in Cambrian reservoirs at well ZS1 of the Tarim Basin,Northwest China[J].Energy & Fuels,2015, 29: 1332-1344.
43 张纪智, 王招明, 杨海军, 等. 塔里木盆地中深地区寒武系岩下白云岩油气来源及差异聚集[J]. 石油勘探与开发, 2017, 44(1): 40-47.
ZHANG J Z, WANG Z M, YANG H J, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area, Tarim Basin, NW China[J].Petroleum Exploration & Development,2017,44(1):40-47.
44 LI S M, AMRANI A, PANG X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78:1-22.
45 宋到福, 王铁冠, 李美俊. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识[J]. 中国科学:地球科学, 2016, 46(1): 107-117.
SONG D F, WANG T G, LI M J. Geochemistry and possible origin of the hydrocarbons from Wells Zhongshen1 and Zhongshen 1C, Tazhong Uplift[J]. Science China Earth Science, 2016, 46(1):107-117.
46 马安来, 金之钧, 朱翠山, 等. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J]. 中国科学: 地球科学, 2018, 48(10):1312-1323.
MA A L, JIN Z J, ZHU C S, et al. Detection and significance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C Well of the Tarim Basin, NW China[J]. Science China Earth Science, 2018, 61(10):1440-1450.
47 CAI C F, XIAO Q L, FANG C C, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 101: 49-62
48 ANDRUSEVICH V E, ENGEL M H, ZUMBERGE J E. Secular, episodic changes in stable carbon isotope composition of crude oils[J]. Chemical Geology, 1998, 152:59-72.
49 朱心健, 陈践发, 伍建军, 等. 塔里木盆地台盆区古生界原油碳同位素组成及油源探讨[J]. 石油勘探与开发, 2017, 44(6): 997-1004.
ZHU X J, CHEN J F, WU J J, et al. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2017, 44(6): 997-1004.
[1] Qiang NIU, Huan-xu ZHANG, Di ZHU, Zhi-yao XU, Yun-feng YANG, An-xu DING, He-qun GAO, Li-sheng ZHANG. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1294-1305.
[2] Gang LIANG, Jun GAN, Jun-jun YOU, Xing LI, Ming-zhu LEI. Geochemical characteristics and exploration prospect of low mature coal-derived gas in Qiongdongnan Basin [J]. Natural Gas Geoscience, 2020, 31(7): 895-903.
[3] Jun-jun YOU, Xi-bing YANG, Ming-zhu LEI, Gang LIANG, Zi-ling WANG. The characteristics and significances of cheilanthane tricyclic terpanes and bicyclic sesquiterpanes in source rocks and oils under different depositional environments in Zhu Ⅲ Depression, Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2020, 31(7): 904-914.
[4] Chun-min HE, Jun GAN, Gang LIANG, Xing LI, Xing WANG, Hui TIAN. The influence of pressure on hydrocarbon gas generation and carbon isotope of methane from type III kerogen [J]. Natural Gas Geoscience, 2020, 31(7): 931-938.
[5] Chao-wei LIU, Xu-guang GUO, Ze-sheng WANG, Ling-li ZHU, Rong ZHANG, Hong CHEN. Study on hydrocarbon accumulation stage of Jurassic Toutunhe Formation in Fudong Slope, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(7): 962-969.
[6] Jian-feng ZHENG, Li-li HUANG, Wen-fang YUAN, Yong-jin ZHU, Zhan-feng QIAO. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[7] Ting-ting LI, Guang-you ZHU, Kun ZHAO, Peng-ju WANG. Nitrogen cycle and nitrogen isotope application in paleoenvironment reconstruction of ancient hydrocarbon source rocks and oil-source correlations [J]. Natural Gas Geoscience, 2020, 31(5): 721-734.
[8] Wei-qiang HU, Yang-bing LI, Xin CHEN, Li-tao MA, Cheng LIU, Ying HUANG, Fang QIAO, Duo WANG, Zai-zhen LIU. Origin and source of natural gas in the Upper Paleozoic in Linxing area, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(1): 26-36.
[9] Mai ZHANG, Cheng-lin LIU, Ji-xian TIAN, Hao PANG, Xu ZENG, Hua KONG, Sai YANG. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam Basin [J]. Natural Gas Geoscience, 2020, 31(1): 61-72.
[10] Er-ting Li, Jun Jin, Jian Cao, Wan-yun Ma, Ju-lei Mi, Jiang-ling Ren. Geochemical characteristics and genesis of natural gas in Jiamuhe Formation in Xinguang area, Junggar Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1362-1369.
[11] Hu Zi-long, Bian Bao-li, Liu Hai-lei, Zhao Long, Lu Shan, Wang Shao-qing. Genetic types,origins and accumulation process of natural gases from Dajing area,Junggar Basin [J]. Natural Gas Geoscience, 2019, 30(6): 850-859.
[12] Ni Yun-yan, Liao Feng-rong, Yao Li-miao, Gao Jin-liang, Zhang Di-jia. Stable hydrogen isotopic characteristics of natural gas from the Xujiahe Formation in the central Sichuan Basin and its implications for water salinization  [J]. Natural Gas Geoscience, 2019, 30(6): 880-896.
[13] Fan Dong-wen, Lu Zhen-quan, Liu Hui, Xiao Rui, Wang Wei-chao, Li Yong-hong, Tang Shi-qi. Gas composition and geological significance of headspace gases from the gas hydrate scientific drilling holes in Harhu Depression,southern Qilian Basin [J]. Natural Gas Geoscience, 2019, 30(4): 526-538.
[14] Liu Ru-hong, Li Jian, Xiao Zhong-yao, Li Jin, Zhang Hai-zu, Lu Yu-hong, Zhang Bao-shou, Ma Wei, Li De-jiang, Liu Man-cang. Geochemical characteristics and implication for gas and oil source correlation in the Tugeerming area of the Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(4): 574-581.
[15] Kong Qing-fen, Zhang Wen-zheng, Li Jian-feng, Zan Chuan-li, . Geochemical characteristics and genesis of Ordovician natural gas under gypsolyte in Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(3): 423-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[8] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[9] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .
[10] . THE APPLICATION AND EFFECTIVENESS EVALUATION OF DOUBLE-STEP HORIZONTAL WELLS  IN SUPER-DEEP AND SUPER-THIN MARGIN RESERVOIR OF TARIM[J]. Natural Gas Geoscience, 2006, 17(2): 230 -232 .