Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (1): 110-121.doi: 10.11764/j.issn.1672-1926.2019.06.008

Previous Articles     Next Articles

Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield

Qiu ZHONG1(),Xue-hai FU1(),Miao ZHANG1,Qing-hui ZHANG2,Wei-ping CHENG3   

  1. 1.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
    2.China Shanxi Provincial Coal Geological Exploration and Research Institute, Taiyuan 030001, China
    3.Shanxi Provincial Research Institute of Geology and Mineral Resources, Taiyuan 030001, China
  • Received:2019-05-22 Revised:2019-06-28 Online:2020-01-10 Published:2020-01-09
  • Contact: Xue-hai FU E-mail:764669679@qq.com;fuxuehai@163.com
  • Supported by:
    Double First Class Construction Independent Innovation Project, China University of Mining and Technology(2018ZZCX05)

Abstract:

The organic geochemistry and mineral composition characteristics of shale in coal measures are analyzed through the experiments of total organic carbon content (TOC), rock pyrolysis, maturity of organic matter and rock X-ray diffraction of 695 shale core samples collected from 27 wells in Qinshui coalfield. The results show that the average TOC value of marine-terrigenous facies shale in coal measures is more than 2.0%, and the middle-good source rocks are mainly concentrated in the second interval. The shale is mainly composed of Type III kerogen, and its thermal evolution is mainly at the over-mature stage with high conversion rate. The shale in Qinshui coalfield is mainly clayey shale. Its mineral composition is characterized by high clay and low silica minerals, and kaolinite is enriched in clay minerals. The rock brittleness index based on mineral composition is mainly distributed between 30% and 50%, with an average of more than 40%, and the brittleness index is II>III>IV>I (The first interval is K8-3# coal, the second interval is 3# coal-K4 limestone, the third interval is K4 limestone-15# coal, and the fourth interval is 15# coal- the Fe-Al-Bearing Rock Members). The ratio of abnormal layer, gas-bearing layer and gas layer thickness is 4.78%, 33.38% and 61.83%, respectively. Gas layer is dominant, and the gas measurement shows the level is II>III>IV>I. Based on the comprehensive analysis of the thickness, organic matter abundance, brittleness and gas-bearing characteristics of shale gas in coal measures, the favorable sequence of the exploration and development potential of shale gas in each interval is II>III>IV>I.

Key words: Shale gas, Shale in coal measures, Organic geochemistry, Mineral composition, Marine-terrigenous facies, Qinshui coalfield

CLC Number: 

  • TE132.2

Fig. 1

Tectonic outline map, comprehensive histogram of coal measure,distribution of wells in the Qinshui coalfield (modified from Refs. [9-10])"

Fig.2

TOC distribution of coal measure shales in each member"

Fig.3

Thickness distribution of TOC over 2% of coal measure shales in each member"

Fig.4

The potential of generating hydrocarbon Pg(S0+S1+S2) of coal measure shales"

Fig.5

The plot of TOC vs. Pg"

Table 1

The rock pyrolysis parameters of coal measure shales from different formations"

参数第Ⅰ层段第Ⅱ层段第Ⅲ层段第Ⅳ层段
TOC/%范围0.17~17.250.14~23.320.12~46.360.22~35
均值2.682.822.953.69
Tmax/范围318.8~578.3347.5~589.2317.5~568.8456.42~590.8
均值517.98509.8487.93525.1
S2/(mg/g)范围0.008 9~2.130.006~5.840.010 5~1.250.025 6~0.83
均值0.520.530.430.37
生油潜量(P)/(mg/g)范围0.015 1~2.180.020 8~5.930.018 3~1.290.034 0~0.85
均值0.530.540.450.40
生烃潜量(Pg)/(mg/g)范围0.121 4~2.180.166 5~5.930.018 3~1.290.035 6~0.85
均值0.530.540.450.43
有效碳(PC)/%范围0.001 4~0.180 90.001 8~0.491 80.001 5~0.106 90.003 0~0.070 9
均值0.044 10.045 10.037 30.033 0
氢指数(IH)/(mg/g)范围0.89~165.080.84~362.120.77~134.035.43~81.34
均值48.3452.0745.2742.55
降解潜率(D)/%范围0.14~16.300.25~43.910.11~13.030.63~7.77
均值4.844.854.193.94

Fig.6

The plot of Tmax and IH"

Fig.7

The plot of D and IH"

Fig.8

The RO distribution of coal measure shales"

Fig.9

The relationship between RO and buried depth"

Fig.10

Ternary diagram for mineral composition of coal measure shales (modified from Ref.[26])"

Fig. 11

Frequency distribution histogram of brittleness index (BI)"

Fig.12

Average thickness histogram of gas logging shows"

Fig.13

Gas bearing level ratios of gas logging shows"

1 赵靖舟,方朝强,张洁,等.由北美页岩气勘探开发看我国页岩气选区评价[J].西安石油大学学报:自然科学版,2011,26(2):1-7.
ZHAO J Z, FANG C Q, ZHANG J, et al. Evaluation of shale gas selection in China from North American shale gas exploration and development[J]. Journal of Xi′an Petroleum Uni-versity: Natural Science Edition, 2011, 26 (2): 1-7.
2 张跃磊,李大华,郭东鑫.页岩气储层压裂改造技术综述[J].非常规油气,2015,2(1):76-82.
ZHANG Y L, LI D H, GUO D X. Overview of shale gas reservoir fracturing technology[J]. Unconventional Oil and Gas, 2015, 2 (1): 76-82.
3 邹才能,董大忠,王社教,等.中国页岩气形成机理,地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
ZOU C N, DONG D Z, WANG S J, et al. Formation mechanism, geological characteristics and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37 (6): 641-653.
4 郭少斌,付娟娟,高丹,等.中国海陆交互相页岩气研究现状与展望[J].石油实验地质,2015, 37(5):535-540.
GUO S B, FU J J, GAO D, et al. Research status and prospects of marine-terrigenous transitional facies shale gas in China[J].Petroleum Geology & Experiment,2015,37(5): 535-540.
5 孙则朋,王永莉,魏志福,等.海陆过渡相页岩含气性及气体地球化学特征——以鄂尔多斯盆地山西组页岩为例[J]. 中国矿业大学学报,2016,45(2):301-309.
SUN Z P, WANG Y L, WEI Z F, et al. Gas-bearing and gas geochemical characteristics of marine-terrigenous facies shale: A case study of the Shanxi Formation shale in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2016, 45(2): 301-309.
6 苏育飞.山西省海陆过渡相煤系“三气”共探共采展望[J].中国煤层气,2016,13(6):7-11.
SU Y F. Prospects for co-exploration and co-exploitation of "three gases" in transitional marine and terrestrial coal measures in Shanxi Province[J]. Coalbed methane in China, 2016, 13(6): 7-11.
7 衣骏杰,唐书恒,张松航,等.沁水盆地阳曲区块煤系烃源岩地球化学特征分析[J].煤炭科学技术,2014,42(s1):233-236.
YI J J, TANG S H, ZHANG S H, et al. Analysis of geochemical characteristics of coal-bearing source rocks in Yangqu block, Qinshui Basin[J].Coal Science and Technology, 2014, 42(s1): 233-236.
8 林玉祥,舒永,赵承锦,等. 沁水盆地含煤地层天然气统筹勘探方法及有利区预测[J]. 天然气地球科学,2017,28(5):744-754.
LIN Y X, SHU Y, ZHAO C J, et al. Natural gas exploration methods and favorable area prediction of coal-bearing strata in Qinshui Basin[J]. Natural Gas Geoscience, 2017,28(5): 744-754.
9 秦勇.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报, 2008,82(10):1355-1362.
QIN Y. Coupling control effect of coalbed methane structural dynamic conditions in Qinshui Basin[J]. Acta Geologica Sinica, 2008, 82(10): 1355-1362.
10 杨晓东,张苗,魏巍,等. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学,2017,28(3):356-365.
YANG X D, ZHANG M, WEI W, et al. Pore characteristics of the “three gas” reservoirs in the coal block of Guxian block, Qinshui Basin[J]. Natural Gas Geoscience,2017,28(3): 356-365.
11 苏育飞,张庆辉,魏子聪.沁水盆地石炭系—二叠系页岩气资源潜力评价[J].中国煤炭地质,2016,28(4):27-34.
Su Y F, Zhang Q H, Wei Z C. Evaluation of Carboniferous-Permian shale gas resources potential in Qinshui Basin[J].Chinese Coal Geology, 2016, 28(4): 27-34.
12 王阳,朱炎铭,陈尚斌,等. 湘西北下寒武统牛蹄塘组页岩气形成条件分析[J]. 中国矿业大学学报,2013,42(4):586-594.
WANG Y, ZHU Y M, CHEN S B, et al. Analysis of shale gas formation conditions in the Lower Cambrian Niutitang Formation in northwestern Hunan[J]. Journal of China University of Mining & Technology, 2013, 42(4): 586-594.
13 BURNAMAN M D, XIA WW, SHELTON J. Shale gas play screening and evaluation criteria[J]. China Petroleum Exploration, 2009, 14(3): 51-64.
14 CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(23): 26-31.
15 PETERS K E, CASSA M R. Applied Source Rock Geochemistry[M]. Tulsa Oklahoma: American Association of Petroleum Geologists, 1994, 5(2): 93-120.
16 陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5.
CHEN J P, ZHAO C Y, HE Z H. Discussion on evaluation criteria of hydrocarbon generation potential of coal-based organic matter[J].Petroleum Exploration and Development, 1997, 24(1): 1-5.
17 钱宇.准噶尔盆地东部侏罗系烃源岩和天然气地球化学特征及低熟气勘探前景[J].石油学报,2017,38(1):44-54.
QIAN Y. Geochemical characteristics of Jurassic source rocks and natural gas and prospects for low-mature gas exploration in the eastern Junggar Basin and [J].Acta Petrolei Sinica, 2017, 38(1): 44-54.
18 郭继刚,王绪龙,庞雄奇,等. 准噶尔盆地南缘中下侏罗统烃源岩评价及排烃特征[J]. 中国矿业大学学报, 2013,42(4):595-605.
GUO J G, WANG X L, PANG X Q, et al. Evaluation and hydrocarbon expulsion characteristics of Middle and Lower Jurassic source rocks in the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2013, 42(4): 595-605.
19 杨万里,李永康,高瑞祺, 等.松辽盆地陆相生油母质的类型与演化模式[J].中国科学数学:中国科学, 1981,24(8):1000-1008.
YANG W L, LI Y K, GAO R Q, et al. Types and evolution patterns of terrestrial kerogen in Songliao Basin[J].Chinese Science Mathematics: Chinese Science, 1981, 24(8): 1000-1008.
20 戴鸿鸣,黄东,刘旭宁,等.蜀南西南地区海相烃源岩特征与评价[J].天然气地球科学,2008,19(4):503-508.
DAI H M, HUANG D, LIU X N, et al. Characteristics and evaluation of marine source rocks in southwestern Yunnan[J].Natural Gas Geoscience, 2008, 19(4): 503-508.
21 袁二军,崔彬,冯小伟,等.南祁连盆地东北部木里地区三叠系尕勒得寺组烃源岩评价[J].中国矿业,2013,22(z1):163-167.
YUAN E J, CUI B, FENG X W, et al. Evaluation of source rocks of the Triassic Juerdesi Formation in the Muli area, northeastern Nanqilian Basin[J].China Mining Magazine, 2013, 22(z1): 163-167.
22 中国石油天然气总公司. SY/T 5735—1995陆相烃源岩地球化学评价方法[S].北京: 石油工业出版社, 1995.
China National Petroleum and Natural Gas Corporation. SY/T 5735-1995 Geochemical Evaluation Method for Continental Source Rocks[S]. Beijing: Petroleum Industry Press, 1995.
23 高德燚,胡宝林,刘会虎,等.淮南煤田泥页岩地球化学特征分析及生烃潜力评价[J].煤炭科学技术,2017,45(5):198-204.
GAO D Z, HU B L, LIU H H, et al. Geochemical characteristics and hydrocarbon generation potential evaluation of shale in Huainan coalfield[J].Coal Science and Technology, 2017, 45(5): 198-204.
24 Yang C, Zhang J, Han S, et al. Compositional controls on pore-size distribution by nitrogen adsorption technique in the Lower Permian Shanxi Shales, Ordos Basin[J]. Journal of Natural Gas Science and Engineering, 2016,34: 1369-1381.
25 韩双彪. 渝东南下寒武页岩纳米级孔隙特征及其储气性能[J]. 煤炭学报,2013,38(6):1038-1043.
HAN S B. Nanoscale pore characteristics and gas storage properties of the Lower Cambrian shale in southeastern Guizhou[J]. Journal of China Coal Society, 2013, 38(6): 1038-1043.
26 张晨晨,王玉满,董大忠,等.川南长宁地区五峰组—龙马溪组页岩脆性特征[J].天然气地球科学,2016,27(9):1629-1639.
ZHANG C C, WANG Y M, DONG D Z, et al. Brittleness characteristics of Wufeng Formation-Longmaxi Formation shale in Changning area, southern Sichuan[J].Natural Gas Geoscience, 2016, 27(9): 1629-1639.
27 祝彦贺,陈桂华,梁建设,等. 页岩油气甜点识别的综合评价方法[J]. 中国矿业大学学报,2016,45(2):301-309.
ZHU Y H, CHEN G H, LIANG J S, et al. Comprehensive evaluation method for shale oil and gas dessert identification[J]. Journal of China University of Mining & Technology, 2016, 45(2): 301-309.
28 陈吉,肖贤明. 南方古生界3套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报,2013,38(5):822-826.
CHEN J, XIAO X M. Analysis of mineral composition and brittleness of three sets of organic-rich shale in the Paleozoic of the South China[J]. Journal of China Coal Society, 2013, 38(5): 822-826.
29 秦勇,梁建设,申建,等.沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J].煤炭学报,2014,39(8):1559-1565.
QIN Y, LIANG J S, SHEN J, et al. Gas measurement and gas reservoir types of tight sandstones and shale in the southern Qinshui Basin[J].Journal of China Coal Society,2014, 39(8):1559-1565.
30 邹才能,陶士振,侯振华,等. 非常规油气地质[M]. 北京:地质出版社,2011.
ZOU C N, TAO S Z, HOU Z H, et al. Unconventional Oil and Gas Geology[M]. Beijing: Geological Publishing House, 2011.
31 《页岩气地质与勘探开发实践丛书》编委会. 中国页岩气地质研究进展[M]. 北京:石油工业出版社, 2011.
Editorial Committee of "Shale Gas Geology and Exploration and Development Practice Series". Progress in China's Shale Gas Geology Research[M]. Beijing: Petroleum Industry Press, 2011.
32 张大伟,李玉喜,张金川. 全国页岩气资源潜力调查评价[M]. 北京:地质出版社,2012.
ZHANG D W, LI Y X, ZHANG J C. National Shale Gas Resource Potential Survey and Evaluation[M]. Beijing: Geological Publishing House, 2012.
33 傅雪海,张苗,张庆辉等. 山西省域石炭—二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654-1660.
FU X H, ZHANG MIAO, ZHANG Q H, et al. Evaluation index system of Permo-Carboniferous coal-bearing shale gas reservoir in Shanxi Province[J]. Journal of Coal Science, 2018, 43 (6): 1654-1660.
[1] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[2] Teng-fei LI, Hui TIAN, Xian-ming XIAO, Peng CHENG, Xing WANG, Yao-wen WU, Zi-jin WU. The effect of particle size on low pressure gas adsorption experiments for high-maturity shale [J]. Natural Gas Geoscience, 2020, 31(9): 1271-1284.
[3] Lu CHEN, Zhi-Ming HU, Wei XIONG, Xiang-Gang DUAN, Jin CHANG. Diffusion experiment of shale gas and mathematical model [J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293.
[4] Qiang NIU, Huan-xu ZHANG, Di ZHU, Zhi-yao XU, Yun-feng YANG, An-xu DING, He-qun GAO, Li-sheng ZHANG. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1294-1305.
[5] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[6] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[7] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[8] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[9] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[10] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[11] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[12] Ming ZHU, Ze-liang LIANG, Jian MA, Zhi-chao PANG, Jun WANG, Yue JIAO. Patterns of hydrocarbon generation and reservoir distribution in the Jurassic strata, Sikeshu Sag, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(4): 488-497.
[13] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
[14] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[15] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[8] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[9] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .
[10] . THE APPLICATION AND EFFECTIVENESS EVALUATION OF DOUBLE-STEP HORIZONTAL WELLS  IN SUPER-DEEP AND SUPER-THIN MARGIN RESERVOIR OF TARIM[J]. Natural Gas Geoscience, 2006, 17(2): 230 -232 .