Natural Gas Geoscience ›› 2019, Vol. 30 ›› Issue (11): 1608-1618.doi: 10.11764/j.issn.1672-1926.2019.03.002

Previous Articles     Next Articles

Study on the genesis of pyrite in the Longmaxi Formation shale in the Upper Yangtze area

Sheng-bo Han1,2(),Wu Li2()   

  1. 1. School of Resources and Earth Science,China University of Mine and Technology,Xuzhou 221116,China
    2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,the Ministry of Education,China University of Mine and Technology,Xuzhou 221008,China
  • Received:2019-01-14 Revised:2019-03-07 Online:2019-11-10 Published:2019-12-03
  • Contact: Wu Li E-mail:TS18010112P31@cumt.edu.cn;liwu@cumt.edu.cn

Abstract:

As a characteristic mineral of shale, pyrite is of great significance. The microcrystalline of strawberry pyrite aggregates is limited to the surrounding environment during the growth process, so it can be used as an indicator to evaluate the sedimentary environment. Therefore, strawberry pyrite is important to restitute palaeo-marine sedimentary water facies. Based on argon ion polishing- scanning electron microscopy imaging of pyrite samples in the shale of Longmaxi Formation in the Upper Yangtze region, the particle size and micrograin size of the strawberry pyrite in the image are measured. Combined with the organic matter content and sulfur content in the Longmaxi Formation shale, a comprehensive analysis of the genesis and formation environment of pyrite is carried out, and the following conclusions are drawn: (1) The average particle size, maximum particle size (MFD) of the strawberry-like pyrite and the ratio of the average particle size of the aggregate to the average particle size of the microcrystals were both small in the study area, and the sedimentary environment is occluded and reduced. The crystallite size of the strawberry pyrite has an indication of the redox state of the sedimentary environment significance. (2) Strawberry-like pyrite is formed in the syngenetic-quasi-probiotic stage; the simple cause of self-crystallized pyrite is formed in the same sedimentary period, and the complex origin pyrite is formed in the diagenetic period. (3) The pore type in the Longmaxi Formation shale is developed. There are a large number of intercrystalline organic pores and mold pores around the pyrite. The pyrite content helps to improve the reservoir pores. Pyrite in deep-water continental shelf shale is closely related to organic matter and has a positive impact on shale gas accumulation and development.

Key words: Shale gas storage capacity, Pyrite, Microcrystalline, Sedimentary environment, Shale

CLC Number: 

  • TE122.2+1

Fig.1

Tectonic outline map of the study area (as modified in Refs. [11-13])"

Fig.2

Intercepting the stratigraphic histogram of some study areas (as modified in Ref.[16])"

Fig.3

Particle size measurement with Image J"

Table 1

Particle size statistics of strawberry-like pyrite aggregates in the Longmaxi Formation shale of the Silurian in the Upper Yangtze area"

样品采集地样品编号统计数量/个平均粒径/μm中值粒径/μm最大粒径/μm标准偏差
川南宜宾CNYB243.513.307.251.62
四川珙县SCGX75.255.116.671.40
云南昭通YNZT234.453.0912.013.07
重庆南川CQNC563.193.106.020.88

Fig.4

Statistic map of the size of strawberry-like pyrite aggregates in the Longmaxi Formation shale of the Silurian system in the Upper Yangtze area"

Table 2

Particle size analysis of strawberry-like pyrite in the Longmaxi Formation shale of the Silurian in the Upper Yangtze area (partial data from Ref.[23])"

样品采集地样品编号草莓状黄铁矿粒径/μm草莓状黄铁矿平均粒径(D)/μm微晶黄铁矿平均粒径(d)/μmD/d
川南宜宾CNYB1.64~7.253.510.3310.72
四川珙县SCGX2.86~6.675.250.3316.15
云南昭通YNZT1.56~12.044.450.518.71
重庆南川CQNC1.59~6.023.190.565.73
湘鄂西地区[23]2.5~64.080.4010.20
湘鄂西地区[23]1.25~83.650.507.30

Fig.5

Vertical variation of S and TOC in Longmaxi Formation in Well JY41"

Fig.6

Types of pores developed in shales"

Fig.7

Binary map of average particle size-standard deviation of strawberry-like pyrite in Longmaxi Formation, Upper Yangtze Distric (partial data fromRefs. [7,9])"

Fig. 8

Sedimentary pattern of the lower Longmaxi Formation in the Upper Yangtze area[33]"

Fig.9

Pyrite transformation from strawberry to cube structure"

1 ZhuHua, YangGuang, YuanBaoguo, et al. Geological conditions resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1475-1485.
朱华,杨光,苑保国,等.四川盆地常规天然气地质条件、资源潜力及勘探方向[J].天然气地球科学,2018,29(10):1475-1485.
2 ZhengMin, LiJianzhong, WuXiaozhi, et al. China’s conventional and unconventional natural gas resource potential key exploration fields and direction[J].Natural Gas Geoscience, 2018, 29(10): 1383-1397.
郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397.
3 ZouCaineng, DongDazhong, YangHua, et al. Conditions of shale gas accumulation and planning practices in China[J]. Natural Gas Industry, 2011, 31(12):26-39,125.
邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39,125.
4 CuiJingwei, ZhuRukai, WuSongtao, et al. The effect of pyrite on the accumulation of organic matter, hydrocarbon generation and expulsion, and accumulation of oil in shale[J]. Geological Review, 2013, 59(supplement 1):783-784.
崔景伟,朱如凯,吴松涛,等.黄铁矿在页岩有机质富集、生排烃与页岩油聚集中的作用[J].地质论评,2013,59(增刊1):783-784.
5 NieHaikuan, ZhangJinchuan. Study on the shale gas accumulation conditions and gas content calculation:Taking the Lower Paleozoic in Sichuan Basin and its periphery as an example[J]. Acta Geological Sinica, 2012, 86(2):349-361.
聂海宽,张金川.页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361.
6 CaoTaotao, DengMo, SongZhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
曹涛涛,邓模,宋之光,等.黄铁矿对页岩油气富集成藏影响研究[J].天然气地球科学,2018,29(3):404-414.
7 WilkinR T,BarnesH L, BrantleyS L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912.
8 ChangHuajin, ChuXuelei. Pyrite framboids and palaeo ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展,2011,26(5):475-481.
9 ZhouC, JiangS Y. Palaeoceanographic redox environments for the Lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 271(3):279-286.
10 ZhangYong. The Geological Setting of Lower Paleozoic Gas-Shale Sequences in the Southern Yangtze Block and the Structural Analyses of the Testing Regions[D]. Nanjing: Nanjing Universuty, 2012.
张勇.扬子地块南部下古生界页岩气地质背景及勘探试验区构造分析[D].南京: 南京大学,2012.
11 FangJunhua, ZhuYanming, WeiWei, et al. Basic geologic analysis of shale gas accumulation in the Longmaxi Formation in Shunan region[J]. Special Oil and Gas Reservoirs, 2010, 17(6):46-49.
方俊华,朱炎铭,魏伟,等.蜀南地区龙马溪组页岩气成藏基础分析[J].特种油气藏,2010,17(6):46-49.
12 YuanJianxin. The regional structural mechanics of southern Sichuan and its significance in oil and gas exploration[J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 1996(1):1-4.
袁建新.川南构造力学分区及其在油气勘探中的意义[J].重庆科技学院学报:自然科学版,1996(1):1-4.
13 FuXiaodong, QinJianzhong, Tenger. Evaluation on excellent marine hydrocarbon source layers in southeast area of the Sichuan Basin:An example from Well D-1[J]. Petroleum Geology and Experiment, 2008, 30(6):621-628.
付小东,秦建中,腾格尔.四川盆地东南部海相层系优质烃源层评价——以丁山1井为例[J].石油实验地质,2008,30(6):621-628.
14 WangTong, YangKeming, XiongLiang, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 2015, 36(8):915-925.
王同,杨克明,熊亮,等.川南地区五峰组—龙马溪组页岩层序地层及其对储层的控制[J].石油学报,2015,36(8):915-925.
15 ChenBo, PiDingcheng. Silurian Longmaxi shale gas potential analysis in middle & upper Yangtze Region[J]. China Petroleum Exploration, 2009, 14(3): 15-19, 1.
陈波,皮定成.中上扬子地区志留系龙马溪组页岩气资源潜力评价[J].中国石油勘探,2009,14(3):15-19, 1.
16 LiuYang. Geochemical Genesis Model and Its Applications of Natural Gas in High-over Matured Shale[D]. Beijing: China University of Geosciences, 2017.
刘飏.高—过成熟页岩中天然气地球化学成因模式与应用[D].北京:中国地质大学,2017.
17 GaoDelu. Twenty five years of rapid development of scanning electron microscope[J]. Modern Scientific Instrument,1990(2):1-4.
高德禄.扫描电子显微镜飞速发展的25年[J].现代科学仪器,1990(2):1-4.
18 ZhaoYan, ZhengJiaoyu, GuoPeng, et al. Applications of the ImageJ software in analysis of solid grains in a debris flow gully[J]. Journal of Lanzhou University: Natural Sciences, 2015, 51(6):877-881.
赵岩,郑娇玉,郭鹏,等.ImageJ软件在泥石流固体颗粒分析中的应用[J].兰州大学学报:自然科学版,2015,51(6):877-881.
19 SongYudan.ImageJ Used in Mineral First Crash Detection[D]. Taiyuan: Taiyuan University of Technology,2008.
宋玉丹.ImageJ在矿物初碎检测中的应用[D].太原: 太原理工大学,2008.
20 SongYudan, QinZhiyu, RongXingfu. Approach to detect image edge and prospect by ImageJ[J]. Mechanical Management and Development, 2009, 23(S1):180-181.
宋玉丹,秦志钰,容幸福.用ImageJ提取图像边缘的方法及展望[J].机械管理开发,2009,23(S1):180-181.
21 YangXueying, GongYiming. Pyrite Framboid:Indicator of Environments and life[J].Earth Science,2011,36(4):643-658.
杨雪英,龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学,2011,36(4):643-658.
22 XuZuxin, HanShumin, WangQichao. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area[J]. Lithologic Reservoirs,2015,27(2):31-37.
徐祖新,韩淑敏,王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义[J].岩性油气藏,2015,27(2):31-37.
23 LiuZiyi, ZhangJinchuan, LiuYang, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26):34-41.
刘子驿,张金川,刘飏,等. 湘鄂西地区五峰组—龙马溪组泥页岩黄铁矿粒径特征[J].科学技术与工程,2016,16(26):34-41.
24 WuChenjun, ZhangMingfeng, MaWanyun, et al. Organic matter characteristic and sedimentary environment of the Lower Cambrian Niutitang shale in southeastern Chongqing[J]. Natural Gas Geoscience, 2014, 25(8): 1267-1274.
吴陈君,张明峰,马万云,等.渝东南牛蹄塘组页岩有机质特征及沉积环境研究[J].天然气地球科学,2014,25(8):1267-1274.
25 ChenShangbin, ZhuYanming, WangHongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3):438-444.
陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
26 SlattR M, O’BrienN R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12):2017-2030.
27 LoucksR G, ReedR M, RuppelS C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
28 WangPengfei, JiangZhenxue, LvPeng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
王朋飞,姜振学,吕鹏,等.重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J].天然气地球科学,2018,29(7):997-1008.
29 LiuZhongbao, GaoBo, HuZongquan, et al. Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: A case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area[J]. Acta Petrolei Sinica, 2017, 38(12):1381-1389.
刘忠宝,高波,胡宗全,等.高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例[J].石油学报.2017,38(12):1381-1389.
30 WuYanyan, CaoHaihong, DingAnxu,et al. Pore characteristics of a shale gas reservoir and its effect on gas content[J]. Petroleum Geology & Experiment, 2015, 37(2): 231-236.
吴艳艳,曹海虹,丁安徐,等.页岩气储层孔隙特征差异及其对含气量影响[J].石油实验地质,2015,37(2):231-236.
31 ZhangJinglian, ZhangPingzhong. A discussion of pyrite catalysis on the hydrocarbon generation process[J] Advances in Earth Science, 1996,11(3): 282-287.
张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.
32 SunShasha, RuiYun, DongDazhong, et al. Paleogeographic evolution of the Late Ordovician-Early Silurian in upper and middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6): 1087-1106.
孙莎莎,芮昀,董大忠,等.中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J].石油与天然气地质,2018,39(6):1087-1106.
33 LiuWei, YuQian, YanJianfei, et al. Characteristics of organic rich mudstone reservoirs in the Silurian Longmaxi Formation in upper Yangtze region[J]. Oil & Gas Geology, 2012, 33(3): 346-352.
刘伟,余谦,闫剑飞,等.上扬子地区志留系龙马溪组富有机质泥岩储层特征[J].石油与天然气地质.2012,33(3):346-352.
34 LiuDameng, YangQi. Occurrence and geological genesis of pyrites in Late Paleozoic coals in North China[J]. Geochimica, 1999(4):340-350.
刘大锰,杨起.华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J].地球化学,1999(4):340-350.
35 TangYuegang, RenDeyi, The genesis of pyrites in coal[J]. Geological Review, 1996, 42(1):64-70.
唐跃刚,任德贻.煤中黄铁矿的成因研究[J].地质论评,1996,42(1):64-70.
36 HuangYong, ZhangXiaolong, XiongTao, et al. Profiling of relationship between shale organic matter enrichment mechanism and gas-bearing property: A case study of Well qq No. 1[J]. Coal Geology of China, 2017, 29(12): 5-11.
黄勇,张小龙,熊涛,等.页岩有机质富集机理与含气性关系剖析——以黔浅1井为例[J].中国煤炭地质,2017,29(12):5-11.
37 LiangFeng, ZhuYanming, MaChao, et al. Sedimentary distribution and reservoir characteristics of shale gas reservoir of Niutitang Formation in northwestern Hunan[J]. Journal of China Coal Society, 2015, 40(12): 2884-2892.
梁峰,朱炎铭,马超,等.湘西北地区牛蹄塘组页岩气储层沉积展布及储集特征[J].煤炭学报,2015,40(12):2884-2892.
38 ZhangQin, LiuHonglin, BaiWenhua, et al. Shale gas content and its main controlling factors in Longmaxi shales in southeastern Chongqing[J]. Natural Gas Industry, 2013, 33(5): 35-39.
张琴,刘洪林,拜文华,等.渝东南地区龙马溪组页岩含气量及其主控因素分析[J].天然气工业,2013,33(5):35-39.
39 ZhangChenchen, WangYuman, DongDazhong, et al. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of “sweet spot layers” in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.
张晨晨,王玉满,董大忠,等.四川盆地五峰组—龙马溪组页岩脆性评价与“甜点层”预测[J].天然气工业,2016,36(9):51-60.
40 YouLijun, KangYili, ChenQiang, et al. Prospect of shale gas recovery enhancement by oxidation-indued rock burst[J]. Natural Gas Industry, 2017, 37(5): 53-61.
游利军,康毅力,陈强,等.氧化爆裂提高页岩气采收率的前景[J].天然气工业,2017,37(5):53-61.
[1] Zhen QIU, Cai-neng ZOU, Hong-yan WANG, Da-zhong DONG, Bin LU, Zhen-hong CHEN, De-xun LIU, Gui-zhong LI, Han-lin LIU, Jiang-lin HE, Lin WEI. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China [J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[2] Shu-qin LI, Sen-lin YIN, Yang GAO, Fang ZHANG, Ying-yan LI, Shou-chang PENG. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
[3] Er-ting LI, Bao-li XIANG, Xiang-jun LIU, Ni ZHOU, Chang-chun PAN, Dilidaer·Rouzi, Ju-lei MI. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar Sag,Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 250-257.
[4] Jing-fei ZHANG, Ji-zhan ZHAO, Dong-dong CHEN, Shu-gang LI, Hai-fei LIN. Sedimentary environment characteristics and genesis of H2S-bearing coal seam in Binchang mining area, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(1): 100-109.
[5] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
[6] Lei-fu Zhang, Da-zhong Dong, Sha-sha Sun, Rong-ze Yu, Lin Li, Shi-yao Lin, Xiao-hu Ouyang, Zhen-sheng Shi, Jin Wu, Yan Chang, Chao Ma, Ning Li. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: Case study of Zhaotong national demonstration area of Yangtze region [J]. Natural Gas Geoscience, 2019, 30(9): 1332-1340.
[7] Jia-xiang Xu, Li-feng Yang, Yun-hong Ding, Zhe Liu, Rui Gao, Zhen Wang. Stress sensitivity analysis of the shale reservoir by the quartet structure generation set [J]. Natural Gas Geoscience, 2019, 30(9): 1341-1348.
[8] Meng⁃qi Zhang, Cai⁃neng Zou, Ping Guan, Da⁃zhong Dong, Sha⁃sha Sun, Zhen⁃sheng Shi, Zhi⁃xin Li, Zi⁃qi Feng, Lilamaocaidan. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area [J]. Natural Gas Geoscience, 2019, 30(9): 1349-1361.
[9] Feng-hua Ma, Jin-li Pan, Rui-yun Ma, Yong Zhang, Xiao-juan Ma. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
[10] Wang Lan, Zeng Wen-ting, Xia Xiao-min, Zhou Hai-yan, Bi He, Shang Fei, Zhou Xue-xian. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression,Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.
[11] Guo Xu-guang, He Wen-jun, Yang Sen, Wang Jiang-tao, Feng You-lun, Jia Xi-yu, Zou Yang, Wang Xia-tian, Huang Li-liang. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar Basin:Case study of Permian Lucaogou Formation in Jimusar Depression [J]. Natural Gas Geoscience, 2019, 30(8): 1168-1179.
[12] Chen Xuan, Liu Xiao-qi, Wang Xue-chun, Ma Qiang, Liu Jun-tian, Gong Xin, Yang Xiao-dong, Shi Jiang-feng, Bai Guo-juan. Formation mechanism and distribution characteristics of Lucaogou shale oil reservoir in Sangtanghu Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1180-1189.
[13] Huang Dong, Yang Guang, Yang Zhi, Yang Tian-quan, Bai Rong, Li Yu-cong, Dai Hong-ming. New understanding and development potential of tight oil exploration and development in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1212-1221.
[14] Wang Ke, Li Hai-tao, Li Liu-jie, Zhang Qing, Bu Cheng-zhong, Wang Zhi-qiang. Research on three widely-used empirical decline methods for shale gas wells in Weiyuan block of the Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 946-954.
[15] Zhang Han. Conductivity optimization research of complex network fractures in shale reservoirs of Longmaxi Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 955-962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[4] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[5] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[6] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[7] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[8] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .
[9] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[10] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .