Natural Gas Geoscience

Previous Articles     Next Articles

Hydrocarbon and non-hydrocarbon characteristics for comprehensive identification about kerogen pyrolysis gas and oil cracked gas

Wang Qiang1,2,Zhang Da-yong3,Wang Jie1,2,Tao Cheng1,2,Tenger1,2,Liu Wen-hui1,2
  

  1. 1.SINOPEC Key Laboratory of Petroleum Accumulation Mechanism,Wuxi 214126,China;
    2.Wuxi Institute of Petroleum Geology,SINOPEC,Wuxi 214126,China;
    3.115 Geological Mineral Exploration and Development Institute of Inner Mongolia Autonomous Region,Ulan Hot 137400,China
  • Received:2018-04-01 Revised:2018-08-07 Online:2018-09-10 Published:2018-09-10

Abstract:

How to effectively identify between kerogen pyrolysis gas and oil cracked gas is always a puzzle in the genetic study of natural gas from marine strata.The hydrocarbon generation and expulsion experiments of different types of kerogen and oil were carried out in a semi-closed and semi-opened system.The simulating products were analyzed and typical cracked gases of kerogen and oil were compared.It indicates that hydrocarbon components and carbon isotope compositions of kerogen and oil cracked gas show similar characteristics,namely Ln(C2/C3)changing rules occur approximately horizontal in early thermal evolution and vertical in late evolution.In the high-over thermal evolution stage, Ln(C2/C3)  values andδ13C213C3 values show rapid enlargement.This denotes the high thermal cracking process of source rocks,which is not an identifying sign about kerogen pyrolysis gas and oil cracked gas.The hydrocarbon composition and isotope compositions of natural gas are effective indicators to identify cracked gas in high thermal evolution,but are not a direct distinguishing index between kerogen pyrolysis gas and oil cracked gas.The evolutionary characteristics of non-hydrocarbon of kerogen pyrolysis gas and oil cracked gas indicate obvious difference,namely high nitrogen are predominant in kerogen pyrolysis gas and high hydrogen sulfide always occurs in oil cracked gas.So nitrogen and hydrogen sulfide abundance combed with hydrocarbon gas isotope composition can be important indicators to distinguish between kerogen pyrolysis gas and oil cracked gas.The above cognitions are coincided with geological reality of the gas field in Sichuan Basin and Tarim Basin.The synthesized analysis on hydrocarbons and non-hydrocarbons of natural gas obtains a new method to effectively distinguish kerogen pyrolysis gas from oil cracked gas.

Key words: Kerogen, Oil, Cracked gas, Hydrocarbon gas, Non-hydrocarbon gases, Distinguishing indicator

CLC Number: 

  • TE122.1+13

[1]Fu Jiamo,Jia Rongfen,Liu Dehan,et al.Organic Geochemistry of Carbonate Rocks[M].Beijing:Science Publishing House,1989:77-90.
傅家谟,贾蓉芬,刘德汉,等.碳酸岩有机地球化学[M].北京:科学出版社,1989:77-90.
[2]Dai Jinxing,Pei Xigu,Qi Houfa.Natural Gas Geology of China[M].Beijing:Petroleum Industry Press,1992.
戴金星,裴锡古,戚厚发.中国天然气地质学[M].北京:石油工业出版社,1992.
[3]Behar F,Kressmann S,Rudkiewicz J L,et al.Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1-3):173-189.
[4]Behar F,Vandenbroucke M,Tang Y,et al.Thermal cracking of kerogen in open and closed systems:Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry,1997,26(5/6):321-339.
[5]Xu Yongchang.Natural Gas Genesis Theory and Its Application[M].Beijing:Science Publishing House,1994.
徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994.
[6]Prinzhofer A A,Huc A Y.Genetic and post-genetic molecular and isotopic fractionations in natural gases[J].Chemical Geology,1995:126(3):281-290.
[7]Mango F D.Methane concentrations in natural gas:The genetic implications[J].Organic Geochemistry,2001,32(10):1283-1287.
[8]Hill R J,Tang Y C,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[9]Hu Guoyi,Xiao Zhongyao,Luo Xia,et al.Light hydrocarbon composition difference between two kinds of cracked gases and its application[J].Natural Gas Industry,2005,25(9):23-25.
胡国艺,肖中尧,罗霞,等.两种裂解气中轻烃组成差异性及其应用[J].天然气工业,2005,25(9):23-25.
[10]Tian Hui,Wang Zhaomin,Xiao Zhongyao,et al.Oil cracking to gases:Kinetic modeling and geological significance[J].Chinese Science Bulletin,2006,51(15):1821-1827.
田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.
[11]Tian Hui,Xiao Xianming,Yang Liguo,et al.Pyrolysis of oil at high temperatures:Gas potentials,chemical and carbon isotopic signatures[J].Chinese Science Bulletin,2009,54(6):781-786.田辉,肖贤明,杨立国,等.原油高温裂解生气潜力与气体特征[J].科学通报,2009,54(6):781-786.
[12]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Cracking conditions of crude oil under different geological environments[J].Science in China:Series D,2007,37(supplement 2):63-68.
赵文智,王兆云,张水昌,等.不同地质环境下原油裂解生气条件[J].中国科学:D辑,2007,37(增刊2):63-68.
[13]Wang Yunpeng,Tian Jing.Review of oil cracked gas formation,identification and migration[J].Natural Gas Geoscience,2007,18(2):235-244.
王云鹏,田静.原油裂解气的形成、鉴别与运移研究综述[J].天然气地球科学,2007,18(2):235-244.
[14]Zhang Min,Huang Guanghui,Hu Guoyi,et al.Geochemical study on oil-cracked gases and kerogen-cracked gases:Simulation experiments and product analysis[J].Science in China:Series:Series D,2008,38(supplement 2):1-8.
张敏,黄光辉,胡国艺,等.原油裂解气和干酪根热解气的地球化学研究(Ⅰ)——模拟实验和产物分析[J].中国科学:D辑,2008,38(增刊2):1-8.
[15]Liu Dehan,Xiao Xianming,Tian Hui,et al.Identification of natural gas origin using the characteristics of bitumen and fluid inclusion[J].Petroleum Exploration and Development,2009,36(3):375-382.
刘德汉,肖贤明,田辉,等.应用储层流体包裹体和沥青特征判别天然气的成因[J].石油勘探与开发,2009,36(3):375-382.
[16]Zhao Mengjun,Zeng Fangang,Qin Shengfeng,et al.Two pyrolytic gases found and proved in Tarim Basin[J].Natural Gas Industry,2001,21(1):35-39.
赵孟军,曾凡刚,秦胜飞,等.塔里木发现和证实两种裂解气[J].天然气工业,2001;21(1):35-39.
[17]Wang Hongjun,Zhou Xingxi.Formation modes of typical marine origin gas pools in Tarim Basin[J].Acta Petrolei Sinica,2001,22(1):14-18.
王红军,周兴熙.塔里木盆地典型海相成因天然气气藏成藏模式[J].石油学报,2001,22(1):14-18.
[18]Yin Changhe,Wang Tingdong,Wang Shunyu,et al.Differences between kerogen-and oil-cracked gases in Sichuan Reservoirs of Weiyuan and Ziyang area[J].Acta Sedimentologica Sinica,2001,19(1):156-160.
尹长河,王廷栋,王顺玉,等.威远、资阳震旦系干酪根与油裂解气的鉴别[J].沉积学报,2001,19(1):156-160.
[19]Zhang Shuichang,Zhao Wenzhi,Wang Feiyu,et al.Paleozoic oil cracking gas accumulation history from eastern part of the Tarim Basin:A case study of the Yingnan 2 gas reservoir[J].Natural Gas Geoscience,2004,15(5):442-451.
张水昌,赵文智,王飞宇,等.塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2 气藏为例[J].天然气地球科学,2004,15(5):442-451.
[20]Li Yanxia.Identification of oil-cracking gas and kerogen-cracking gas[J].Journal of Xi’an Shiyou University:Natural Science Edition,2008,23(6):42-50.
李艳霞.原油裂解气和干酪根裂解气的判识[J].西安石油大学学报:自然科学版,2008,23(6):42-50.
[21]Ma Yongsheng,Guo Xusheng,Guo Tonglou,et al.Discovery of the large scale Puguang Gas Field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting[J].Geological Review,2005,51(4):477-480.
马永生,郭旭升,郭彤楼,等.四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,51(4):477-480.
[22]Liu Wenhui,Tenger,Gao Bo,et al.H2S formation and enrichment mechanism in medium to large scale natural gas fields(reservoirs) in Sichuan Basin[J].Petroleum Exploration and Development,2010,37(5):513-522.
刘文汇,腾格尔,高波,等.四川盆地大中型天然气田(藏) 中H2S 形成及富集机制[J].石油勘探与开发,2010,37(5):513-522.
[23]Liu Wenhui,Luo Houyong,Tenger,et al.Simulation experiments on crude oil cracking and carbon isotopic evolution in carbonate reservoirs[J].Oil and Gas Geology,2016,37(5):627-633.
刘文汇,罗厚勇,腾格尔,等.碳酸盐岩储层中原油裂解及碳同位素演化模拟实验[J].石油与天然气地质,2016,37(5):627-633.
[24]Guo Tonglou.Basic characteristics of deep reef-bank reservoirs and major controlling factors of gas pools in the Yuanba Gas Field[J].Natural Gas Industry,2011,31(10):12-16.
郭彤楼.元坝深层礁滩气田基本特征与成藏主控因素[J].天然气工业,2011,31(10):12-16.
[25]Tenger,Liu Wenhui,Qin Jianzhong,et al.Dynamic transformation mechanism for hydrocarbon generation from multiple sources in deep-buried marine carbonates in the northeastern Sichuan Basin:A case study from the Puguang Gasfield[J].Acta Petrologica Sinica,2012,8(3):895-904.
腾格尔,刘文汇,秦建中,等.川东北地区海相深层多源生烃动态转化机制——以普光气田为例[J].岩石学报,2012,8(3):895-904.
[26]Zheng Lunju,Qin Jianzhong,He Sheng,et al.Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J].Petroleum Geology and Experiment,2009,31(3):296-302.
郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3) :296-302.
[27]Chen Jianfa,Zhu Yuenian.The origin of molecular nitrogen in natural gas and geochemical characteristics of molecular nitrogen in natural gas from east part of Tarim Basin[J].Natural Gas Geoscience,2003,14(3):172-176.
陈践发,朱岳年.天然气中氮的来源及塔里木盆地东部天然气中氮的地球化学学特征[J].天然气地球科学,2003,14(3):172-176.
[28]Zhu Guangyou,Fei Anguo,Zhao Jie,et al.Sulfur isotopic fractionation and mechanism for thermochemical sulfate reduction genetic H2S[J].Acta Petrologica Sinica,2014,30(12):3772-3786.
朱光有,费安国,赵杰,等.TSR成因H2S的硫同位素分馏特征与机制[J].岩石学报,2014,30(12):3772-3786.
[29]Chen Jianfa,Xu Xuemin,Shi Shengbao.Geochemical characteristics of nitrogen isotope of crude oils in different depositional environments[J].Journal of China University of Petroleum:Edition of Natural Science,2015,39(5):1-6.
陈践发,徐学敏,师生宝.不同沉积环境下原油氮同位素的地球化学特征[J].中国石油大学学报:自然科学版,2015,39(5):1-6.
[30]Zheng Bing,Tenger,Zhang Jianyong,et al.Origin of H2S from TSR and TDR reaction in oil/gas reservoirs in the Feixianguan Formation,the northeastern Sichuan Basin[J].Oil and Gas Geology,2010,31(6):847-856.
郑冰,腾格尔,张建勇,等.川东北地区飞仙关组油气藏H2S由TSR和TDR两种方式形成[J].石油与天然气地质,2010,31(6):847-856.
[31]Liu Wenhui,Tenger,Zhang Zhongning,et al.An isotope study of the accumulation mechanisms of high-sulfur gas from the Sichuan Basin,southwestern China[J].Scientia Sinica:Terrae,2016,47(2):166-178.
刘文汇,腾格尔,张中宁,等.四川盆地高硫天然气成藏机理的同位素研究[J].中国科学:地球科学,2017,47(2):166-178.

[1] Wei Yan-Zhao, Song Zhi-Hua, Qi Rui, Wang Wei, Gong De-Yu, Wang Feng. Re-examination of genetic types and origins of natural gases from Dibei Uplift,eastern  Luliang Uplift,Junggar Basin [J]. Natural Gas Geoscience, 2019, 30(6): 840-849.
[2] Zeng Xu, Lin Tong, Wang Wei, Yan Zhan-dong, Hao Cui-guo, Bian Ying-ying, Wang Jun. Detrital zircon dating of LA-ICP-MS in the Upper Jurassic and indicative significance of the Qaidam Basin [J]. Natural Gas Geoscience, 2019, 30(5): 662-672.
[3] Gao Yong-liang, Wen Zhi-gang, Li Wei. Geochemical characteristics of lacustrine organic-rich fine-grainedsedimentary rocks and its effects on the accumulation of tight oil:Case study of Chang 7 member of Triassic Yanchang Formation in Longdong area,Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(5): 729-739.
[4] Hu Han-wen, Zhang Yuan-yuan, Zhuo Qin-gong, Jia Cheng-zao, Guo Zhao-jie. Hydrocarbon charging history of the lower petroleum system in the southern Junggar Basin: Case study of the Qigu Oil Field [J]. Natural Gas Geoscience, 2019, 30(4): 456-467.
[5] Liu Ru-hong, Li Jian, Xiao Zhong-yao, Li Jin, Zhang Hai-zu, Lu Yu-hong, Zhang Bao-shou, Ma Wei, Li De-jiang, Liu Man-cang. Geochemical characteristics and implication for gas and oil source correlation in the Tugeerming area of the Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(4): 574-581.
[6] Kang Guang-xing, Xu Xue-min, Wang Shuang-qing, Yang Jia-jia, Sun Wei-lin, Shen Bin, Qin Jing, Lu Ran, Zhang Xiao-tao, Guo Wang. Experimental study on thermal evolution of kerogen in Paleozoic#br# #br# Experimental study on thermal evolution of kerogen in Paleozoic#br# [J]. Natural Gas Geoscience, 2019, 30(4): 593-602.
[7] Li Meng-ru, Tang You-jun, Liu Yan, Hu Hui, He Qi-chuan. Geochemical characteristics and oil-source correlation in crude oilsfrom different regions of Jiangling Depression [J]. Natural Gas Geoscience, 2018, 29(9): 1240-1251.
[8] Zhou Li-hong,Pu Xiu-gang,Xiao Dun-qing,Li Hong-xiang,Guan Quan-sheng,Lin Ling,Qu Ning. Geological conditions for shale oil formation and the main controlling factors for theenrichment of the 2nd member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(9): 1323-1332.
[9] Yang Zhi-feng,Zeng Jian-hui,Han Fei. Analysis of influencing factors on tight oil charging of the 7th member ofYanchang Formation  in southwestern Ordos Basin [J]. Natural Gas Geoscience, 2018, 29(7): 961-972.
[10] Wang Peng-fei,Jiang Zhen-xue,Lü Peng,Jin Can,Li Xin,Huang Pu. Organic matter pores and evolution characteristics of shalesin the Lower Silurian Longmaxi Formation and the LowerCambrian Niutitang Formation in periphery of Chongqing [J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
[11] Pei Li-xin,Gang Wen-zhe,Zhu Chuan-zhen,Liu Ya-zhou,He Wen-jun,Xiang Bao-li,Dong Yan. Carbon isotopic composition and source of hydrocarbon gases in the Junggar Basin [J]. Natural Gas Geoscience, 2018, 29(7): 1020-1030.
[12] Zhu Kuan-liang,Wu Xiao-hong,Kang Yi-li,You Li-jun,Tian Jian,Song Jing-han. Experimental evaluation of liquid phase trapping damage on tight volcanic gas reservoirs:Case study of Shahejie Formation in 5th structure,Nanpu Depression,Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(7): 1042-1050.
[13] Wang Yao-ping,Zou Yan-rong,Shi Jian-ting,Shi Jun. The application of chemometrics in oil-oil and oil-source rock correlations:Current situation and future prospect [J]. Natural Gas Geoscience, 2018, 29(4): 452-467.
[14] Cao Tao-tao,Deng Mo,Song Zhi-guang,Liu Guang-xiang,Huang Yan-ran,Andrew Stefan Hursthouse. Study on the effect of pyrite on the accumulation of shale oil and gas [J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
[15] Li Min, Li Shuang-ying, Li Zhen-sheng, Cheng Cheng, Xie Wei. Sedimentary facies and prospects for oil-gas exploration of Zhuxiang Formation of Lower Cretaceous in Hefei Basin [J]. Natural Gas Geoscience, 2018, 29(11): 1608-1618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[4] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[5] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[6] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[7] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[8] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .
[9] . THE STUDY OF THE OIL-PRONE & GAS-PRONE FOR JURASSIC COALS[J]. Natural Gas Geoscience, 2006, 17(2): 183 -186 .
[10] . FLUID FLOW SIMULATION OF DIFFERENT RESERVOIR MODEL  OF PU 53[J]. Natural Gas Geoscience, 2006, 17(2): 201 -205 .