Natural Gas Geoscience

Previous Articles     Next Articles

Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield,Kuqa Depression,Tarim Basin

Yang Hai-jun,Zhang Rong-hu,Yang Xian-zhang,Wang Ke,Wang Jun-peng,Tang Yan-gang,Zhou Lu   

  1. 1.PetroChina Tarim Oilfield Company,Korla 841000,China;2.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
  • Received:2018-04-17 Revised:2018-06-30 Online:2018-07-10 Published:2018-07-10

Abstract: The deep gas field in Kuqa Depression is an important battlefield of natural gas production and storage in Tarim Basin.It is also the main source area of the national “One Belt and One Road” energy channel,but the gas reservoir is buried deeper than 6 000m.In these deep reservoirs,netted-vertical fractures developed at the density of 3-12 items/m,with average matrix porosity and permeability of 3.8% and 0.128×10-3μm2.The characteristics of tectonic fractures in tight sandstone reservoir of Cretaceous Bashijiqike Formation (K1bs),Keshen Gasfield,Kuqa Depression was characterized and the improvement of tectonic fractures on reservoir was analyzed using core,thin sections and image logging.There are two groups of tectonic fractures in Keshen Gasfield:EW tensile fractures with high dip angle and NS compressive vertical fractures,and the former has high filling degree while the latter was mostly unfilled.Microfractures are primarily transgranular fractures with an aperture of 10-100μm.On the FMI image,tectonic fractures are primarily parallel assemblage.The improvement of tectonic fractures on reservoir includes three aspects:tectonic fractures can directly enhance reservoir permeability,dissolution along tectonic fractures can effectively improve pore structure;early filled fractures can still be effective flowing channel.The high position of anticline has high magnitude of tectonic fracture permeability and therefore controls the enrichment and high yield of natural gas.The network and vertical opening fractures are effectively communicating with the reservoir matrix pore throat,forming the visual homogeneity-medium heterogeneous body,which can produce high yield and long-term stable production of natural gas.

Key words: Kuqa Depression, Keshen Gasfield, Ultra-deep, Tight sandstone reservoir, Structural fracture, Improvement effect

CLC Number: 

  • TE122.1

[1]Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.
贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.
[2]Guo Yingchun,Pang Xiongqi,Chen Dongxia,et al.Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns[J].Oil & Gas Geology,2013,34(6):717-724.
郭迎春,庞雄奇,陈冬霞,等.致密砂岩气成藏研究进展及值得关注的几个问题[J].石油与天然气地质,2013,34(6):717-724.
[3]Wei Xinshan,Hu Aiping,Zhao Huitao,et al.New geological understanding of tight sandstone gas[J].Lithologic Reservoirs,2017,29(1):11-20.
魏新善,胡爱平,赵会涛,等.致密砂岩气地质认识新进展[J].岩性油气藏,2017,29(1):11-20.
[4]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.
戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.
[5]Ding Wenlong,Yin Shuai,Wang Xinghua,et al.Assessment method and characterization of tight sandstone gas reservoir fractures[J].Earth Science Frontiers,2015,22(4):173-187.丁文龙,尹帅,王兴华,等.致密砂岩气储层裂缝评价方法与表征[J].地学前缘,2015,22(4):173-187.
[6]Wang Zhaoming.Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.
王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
[7]Wang Zhaoming,Li Yong,Xie Huiwen,et al.Geological understanding on the formation of large-scale ultra-deep oil-gas field in Kuqa foreland basin[J].China Petroleum Exploration,2016,21(1):37-43.
王招明,李勇,谢会文,等.库车前陆盆地超深层大油气田形成的地质认识[J].中国石油勘探,2016,21(1):37-43.
[8]Zhang Ronghu,Yang Haijun,Wang Junpeng,et al.The formation mechanism and exploration significance of ultra-deep,low-permeability and tight sandstone reservoirs in Kuqa Depression,Tarim Basin[J].Acta Petrolei Sinica,2014,35(6):1057-1069.
张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报,2014,35(6):1057-1069.
[9]Zhang Huiliang,Zhang Ronghu,Yang Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.
张惠良,张荣虎,杨海军,等.超深层裂缝—孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.
[10]Neng Yuan,Xie Huiwen,Sun Tairong,et al.Structural characteristics of Keshen segmentation in Kelasu structural belt and its petroleum geological significance[J].China Petroleum Exploration,2013,18(2):1-6.
能源,谢会文,孙太荣,等.克拉苏构造带克深段构造特征及其石油地质意义[J].中国石油勘探,2013,18(2):1-6.
[11]Zhao Jilong,Wang Junpeng,Liu  Chun,et al.Reservoir fracture numerical simulation of Keshen-2 block in Tarim Basin[J].Geoscience,2014,28(6):1275-1283.
赵继龙,王俊鹏,刘春,等.塔里木盆地克深2区块储层裂缝数值模拟研究[J].现代地质,2014,28(6):1275-1283.
[12]Chang Lunjie,Zhao Libin,Yang Xuejun,et al.Application of industrial computed tomography (ICT) to research of fractured tight sandstone gas reservoirs[J].Xinjiang Petroleum Geology,2014,35(4):471-475.
昌伦杰,赵力彬,杨学君,等.应用ICT技术研究致密砂岩气藏储集层裂缝特征[J].新疆石油地质,2014,35(4):471-475.
[13]Zeng L,Li X.Fractures in sandstone reservoirs with ultra-low permeability:A case study of the Upper Triassic Yanchang Formation in the Ordos Basin,China[J].AAPG Bulletin,2009,93(4):461-477.
[14]Li Yijun,Li Jinbu,Yang Renchao,et al.Relationship between gas bearing capacity and reservoir fractures of tight sand reservoirs in the eastern block 2 of the Sulige Gasfield[J].Natural Gas Industry,2012,32(6):28-30.
李义军,李进步,杨仁超,等.苏里格气田东二区致密砂岩储层裂缝与含气性的关系[J].天然气工业,2012,32(6):28-30.
[15]Wang Pengwei,Chen Xiao,Pang Xiongqi,et al.The controlling of structure fractures on the accumulation of tight sand gas reservoirs[J].Natural Gas Geoscience,2014,25(2):185-191.
王鹏威,陈筱,庞雄奇,等.构造裂缝对致密砂岩气成藏过程的控制作用[J].天然气地球科学,2014,25(2):185-191.
[16]Liu Chun,Zhang Ronghu,Zhang Huiliang,et al.Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt,Tarim Basin,NW China[J].Petroleum Exploration and Development,2017,44(3):469-478.
刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):469-478.
[17]Zhao Jingzhou,Dai Jinxing.Timing and filling history of natural gas reservoirs in Kuqa foreland thrust belts,Tarim Basin[J].Acta Petrolei Sinica,2002,23(2):6-10.
赵靖舟,戴金星.库车前陆逆冲带天然气成藏期与成藏史[J].石油学报,2002,23(2):6-10.
[18]Gong Lei,Zeng Lianbo,Du Yijing,et al.Influences of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Kuqa foreland basin[J].Journal of China University of Mining & Technology,2015,44(3):514-519.
巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响——以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报,2015,44(3):514-519.
[19]Xie Huiwen,Li Yong,Qi Jiafu,et al.Differential structural deformation and tectonic evolution in the middle part of Kuqa Depression,Tarim Basin[J].Geoscience,2012,26(4):682-690.
谢会文,李勇,漆家福,等.库车坳陷中部构造分层差异变形特征和构造演化[J].现代地质,2012,26(4):682-690.
[20]Zeng Lianbo,Tan Chengxuan,Zhang Mingli.Tectonic stress field and its effect on hydrocarbon migration and accumulation in Mesozoic and Cenozoic in the Kuqa Depression,Tarim Basin[J].Science in China:Series D,2004,34(supplement 1):98-106.
曾联波,谭成轩,张明利.塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J].中国科学:D辑,2004,34(增刊1):98-106.
[21]Ding Wenlong,Yin Shuai,Wang Xinghua,et al.Assessment method and characterization of tight sandstone gas reservoir fractures[J].Earth Science Frontiers,2015,22(4):173-187.
丁文龙,尹帅,王兴华,等.致密砂岩气储层裂缝评价方法与表征[J].地学前缘,2015,22(4):173-187.
[22]Zhang Ronghu,Yang Haijun,Wang Junpeng,et al.The formation mechanism and exploration significance of ultra-deep,low-permeability and tight sandstone reservoirs in Kuqa Depression,Tarim Basin[J].Acta Petrolei Sinica,2014,35(6):1057-1069.
张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报,2014,35(6):1057-1069.

[1] Wei Qiang, Li Xian-qing, Sun Ke-xin, Li Jin, Xiao Zhong-yao, Liang Wan-le, Zhang Ya-chao, . Geochemical characteristics of deep-seated natural gas accumulation of the Keshen large gas field in the Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(6): 897-907.
[2] Jia Ai-lin, Tang Hai-fa, Han Yong-xin, Lv Zhi-kai, Liu Qun-ming, Zhang Yong-zhong, Sun He-dong, Huang Wei-gang, Wang Ze-long. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(6): 908-918.
[3] Zhang Hui, Yin Guo-qing, Wang Hai-ying. Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(3): 379-388.
[4] Bao Jian-ping, Zhu Cui-shan, Shen Xu. Study on diamondoids and genetic mechanism of condensates from the Kela 2 structure in the Kuche Depression [J]. Natural Gas Geoscience, 2018, 29(9): 1217-1230.
[5] Zhang Rong-hu, Wang Ke, Wang Jun-peng, Sun Xiong-wei, Li Jun, Yang Xue-jun, Zhou Lu. Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(9): 1264-1273.
[6] Zhu Guang-you,Cao Ying-hui,Yan Lei,Yang Hai-jun,Sun Chong-hao,Zhang Zhi-yao,Li Ting-ting,Chen Yong-quan. Petroleum exploration potential and favorable areas of ultra-deepmarine strata deeper than 8 000 meters in Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(6): 755-772.
[7] Zhao Li-bin,Zhang Tong-hui,Yang Xue-jun,Guo Xiao-bo,Rao Hua-wen. Gas-water distribution characteristics and formation mechanics in deeptight sandstone gas reservoirs of Keshen block,Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(4): 500-509.
[8] Gao Wen-jie,Li Xian-qing,Zhang Guang-wu,Wei Qiang,Zhang Ji-zhen,Qi Shuai,Chen Jin-ming. The relationship research between densification of reservoir and accumulation of the deep tight sandstone gas reservoirs of the Kelasu tectonic zone in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(2): 226-235.
[9] Zhang Yan,Zhang Chun-lei,Gao Shi-chen. Seismic facies analysis of tight sandstone reservoir based on SOM and HSV color technique [J]. Natural Gas Geoscience, 2018, 29(2): 259-267.
[10] Zhao Jun, Cao Gang, Wu Yan-liang. Application of multivariate membership function for tight sandstone reservoir classification [J]. Natural Gas Geoscience, 2018, 29(11): 1553-1558.
[11] Li Guo-xin , Yi Shi-wei , Lin Shi-guo , Gao Yang , Li Ming-peng , Li De-jiang , Wang Chang-yong . Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1506-1517.
[12] Zhang Zhou,Wang Sheng-wei,Zhou Min. Forecast and validation of coal reservoir fractures based  on structural fracture mapping technology [J]. Natural Gas Geoscience, 2017, 28(9): 1356-1362.
[13] . Influencing factors and efficient reservoir stimulation countermeasuresin thick and ultra-deep naturally fractured reservoir [J]. Natural Gas Geoscience, 2017, 28(8): 1280-1286.
[14] Zhang Da-zhi. Characterization of microscopic pore structure of tight sandstone reservoirs through nitrogen adsorption experiment: Case study of Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin,China [J]. Natural Gas Geoscience, 2017, 28(6): 898-908.
[15] Yang Zhi-feng,Zeng Jian-hui,Han Fei,Feng Xiao,Feng Sen,Zhang Yi-dan,Qiao Jun-cheng. Characterization of microscopic pore texture of Chang 6-Chang 8 members tight sandstone reservoirs in the southwestern part of Ordos Basin,China [J]. Natural Gas Geoscience, 2017, 28(6): 909-919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[4] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[5] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[6] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[7] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[8] CAO Hua,GONG Jing-jing,WANG Gui-feng. THE CAUSE OF OVERPRESSURE AND ITS RELATIONSHIP WITH RESERVOIR FORMING[J]. Natural Gas Geoscience, 2006, 17(3): 422 -425 .
[9] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[10] DU Le-tian. INTRODUCTION AND ANALYSIS OF FOREIGN NATURAL GAS GEOSCIENCE STUDIES BASED ON SO KOLOV'S DATA[J]. Natural Gas Geoscience, 2007, 18(1): 1 -18 .