Natural Gas Geoscience doi: 10.11764/j.issn.1672-1926.2017.06.004

Previous Articles    

Comparativeresearch on the yields and chemical compositions of light hydrocarbonsderived from pyrolysis of organic matters with different types

Qi Shuai1,2,3,4,Li Xian-qing1,2,He Kun3,4,Zhang Guang-wu5,Chen Jin-ming1,2,3,4,Gao Wen-jie1,2,Liang Wan-le1,2   

  1. 1.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),
    Beijing 100083,China;2.College of Geoscience and Surveying Engineering,China University of Mining and
    Technology(Beijing),Beijing 100083,China;3.Research Institute of Petroleum Exploration and Development,
    PetroChina,Beijing 100083,China;4.Key Laboratory of Petroleum Geochemistry,CNPC,Beijing 100083,China;
    5.Langfang Branch,Research Intitute of Petroleum Exploration & Development,PetroChina,Langfang 065007,China
  • Received:2017-04-12 Revised:2017-05-18 Online:2017-06-10 Published:2017-06-10

Abstract:

Based on gold-tube pyrolysis experiments and quantitative determination of light hydrocarbon(C6-14) products,the yields and composition characteristics of light hydrocarbons derived from different types of organic matters were studied in the paper.The quantification of light hydrocarbon products by PY-GC-MS,shows that C6-14 yieldsfrom lacustrine Type-Ⅰ and marine Type-Ⅱ1 organic matters with high IH areapparently higher than that from marine Type-Ⅱ2 organic matter.The maximum light hydrocarbon yields of Cretaceous lacustrine type I organic matter,Xiamaling type Ⅱ1 organic matter and Permian typeⅡ2 organic matter are 33.56,39.58 and 10.08mg/gTOC,respectively.Relatively,the content of aromatic hydrocarbons in light hydrocarbon products is obviously higher than that of saturated hydrocarbons.Meanwhile,the corresponding pyrolysis temperature or maturity reaching the maximum C6-14 yield for Type-Ⅰ kerogen is lower than that forType- Ⅱ kerogen.The evolution of the yields of normal alkanes(n-alkanes) with different carbon number during gold-tube pyrolysis,indicates that the equivalent vitrinite reflectance(Easy% RO) with the maximum yield forn-alkanes with lower carbon number is much higher than that with higher carbon number.This is attributed to the higher generation and cracking activation energy of lower carbon alkanes.By analysis of the light hydrocarbon compositions,we think that several parameters including the content of naphthalene,benzene/hexane and toluene/heptane are well relevant with maturity,and can be used to indicate the degree of thermal evolution of organic matters.

Key words: Different types of organic matters, Compositions of light hydrocarbons, Gold-tube pyrolysis, PY-GC-MS, Thermal evolution

CLC Number: 

  • TE122.1+13

[1]Burnaman M D,Shelton J.Shale gas play screening and evaluation criteria[J].China Petroleum Exploration,2009,14(3):51-64.
[2]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Successive generation of natural gas from organic materials and its significance in future exploration[J].Petroleum Exploration and Development,2005,32(2):1-7.[赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.]
[3]Zhao Wenzhi,Wang Zhaoyun,Wang Hongjun,et al.Further discussion on the connotation andsignificanceof the natural gas relaying generation model from organic materials[J].Petroleum Exploration and Development,2011,38(2):129-135.[赵文智,王兆云,王红军,等.再论有机质“接力成气”的内涵与意义[J].石油勘探与开发,2011,38(2):129-135.]
[4]Wang Zhaoyun,Zhao Wenzhi,Zhang Shuichang,et al.Origin of deep marine gas and oil cracking gas potential of Paleozoic source rocks in Tarim Basin[J].Acta Sedimentologica Sinica,2009,27(1):153-161.[王兆云,赵文智,张水昌,等.深层海相天然气成因与塔里木盆地古生界油裂解气资源[J].沉积学报,2009,27(1):153-163.]
[5]Li Xianqing,Zhang Jizhen,Wang Yuan,et al.Accumulation conditions of Lower Paleozoic shale gas from the southern Sichuan Basin,China[J].Journal of Natural Gas Geoscience,2016,1(2):101-108.
[6]Mango F D.An invariance in the isoheptanes of petroleum[J].Science,1987,237(4814):514-517.
[7]Mango F D.The light hydrocarbons in petroleum:a critical review[J].Organic Geochemistry,1997,26(7/8):417-440.
[8]Thompson K F M.Light hydrocarbons in subsurface sediments[J].Geochimicaet Cosmochimica Acta,1979,43(5):657-672.
[9]Whelan J K,Hunt J M.Volatile C1-C8 organic compounds in sediments from the Peru upwelling region[J].Organic Geochemistry,1983,5(1):13-28.
[10]Li  Xianqing,Xiao Xianming,Tian Hui.The Generation Kinetics of Natural Gas and Its Application[M].Beijing:Geological Publishing House,2011:1-145.[李贤庆,肖贤明,田辉.天然气生成动力学及其应用[M].北京:地质出版社,2011:1-145.]
[11]Li  Xianqing,Yang Yunfeng,Feng Songbao,et al.Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J].Journal of China University of Mining & Technology,2012,41(3):397-405.[李贤庆,仰云峰,冯松宝,等.塔里木盆地原油裂解生烃特征与生气过程研究[J].中国矿业大学学报,2012,41(3):397-405.]
[12]Zhang Min,Huang Guanghui,Hu Guoyi,et al.Geochemistry study of oil-drived and kerogen maturation gases(Ⅰ):Simulation experiment and product analysis[J].Science in China:Series D,2008,38(supplement Ⅱ):12-19.[张敏,黄光辉,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究(Ⅰ)油裂模拟实验和产物分析[J].中国科学:地球科学,2008,38(增刊2):12-19.]
[13]Chen Xiaohui,Zhang Min,Huang Guanghui,et al.Geochemicalcharateristics of light hydrocarbons in cracking gases from chloroform bitumen A,crude oil and its fractions[J].Science in China:series D,2008,38(supplement Ⅱ):27-33.[陈小慧,张敏,黄光辉,等.氯仿沥青“A”、原油及其族组分裂解气轻烃地球化学特征[J].中国科学:地球科学,2008,38(增刊2):27-33.]
[14]Tang Xiaoqiang,Huang Guanghui,Zhang Min,et al.Compositon characteristics and geochemical significance of n-alkanes in the process of cracking of crude oil[J].Earth Science Frontiers,2009,16(6):372-378.[唐小强,黄光辉,张敏,等.原油裂解过程中正构烷烃的组成变化特征及其地球化学意义[J].地学前缘,2009,16(6):372-378.]
[15]Tang Xiaoqiang,Huang Guanghui,Zhang Min,et al.Composition characteristics of products in the process of cracking of crude oil and oil fractions[J].Journal of Chengdu University of Technology:Science& Technology Edition,2011,38(1):21-28.[唐小强,黄光辉,张敏,等.原油及其族组分裂解过程中产物组成变化特征[J].成都理工大学学报:自然科学版,2011,38(1):21-28.]
[16]Hu Guoyi,Xiao Zhongyao,Luo Xia,et al.Light hydrocarbon composition difference between two kinds of cracked gases and its application[J].Natural Gas Industry,2005,25(9):23-25.[胡国艺,肖中尧,罗霞,等.两种裂解气中轻烃组成差异性及其应用[J].天然气工业,2005,25(9):23-25.]
[17]Xiao Tingrong,Cai Bing,Meng Jianhua,et al.Contrastive study of two methods(“programmed temperature vaporization with back flushing” and “head space”)for light hydrocarbon analysis[J].Chinese Journal of Chromatography,2001,19(4):304-308.[肖廷荣,蔡冰,孟建华,等.两种轻烃分析方法(“PTV切割反吹”和“顶空”)的对比研究[J].色谱,2001,19(4):304-308.]
[18]Zhu Rifang,Zhang Linye,Li Juyuan,et al.Quantitative evaluation of residual liuid hydrocarbons in shale[J].Acta Petrolei Sinica,2015,36(1):13-18.[朱日房,张林晔,李钜源,等.页岩滞留液态烃的定量评价[J].石油学报,2015,36(1):13-18.]
[19]He Kun,Zhang Shuichang,Wang Xiaomei,et al.Hydrocarbon generation kinetics of type-Ⅰ organic matters in the Cretaceous lacustrine sequences,Songliao Basin[J].Oil & Gas Geology,2014,35(1):42-49.[何坤,张水昌,王晓梅,等.松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J].石油与天然气地质,2014,35(1):42-49.]
[20]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):1-8.[何坤,张水昌,米敬奎.原油裂解的动力学和控制因素研究[J].天然气地球科学,2011,22(2):1-8.]
[21]Hartgers W A,Damstéamst S,Leeuw J W D.Identification of C2-C4,alkylated benzenes in flash pyrolysates of kerogens,[JP3]coals and asphaltenes[J].Journal of Chromatography,1992,606(2):211-220.
[22]Hartgers W A,Damsté J S S,Leeuw J W D.Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens,coals,andasphaltenes[J].Geochimicaet Cosmochimica Acta,1994,58(7):1759-1775.
[23]Hill R J,Lu S,Tang Y,et al.C4-benzene and C4-naphthalene thermal maturity indicators for pyrolysates,oils and condensates[J].Geochemical Society Special Publications,2004,9(4):303-319.
[24]Zhang S C,Huang H,Su J,et al.Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim Basin,NW China[J].Organic Geochemistry,2014,77:126-139.
[25]Behar F,Kressmann S,Rudkiewicz J L.Experimental simulation in a confined system and kinetic modeling of kerogen and oil crack-ing[J].Organic Geochemistry,1992,19(1-3):173-189.
[26]Behar F,Vandenbroucke M,Tang Y.Thermal cracking of in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry,1997,26(516):321-339.
[27]Dolci L S,Sciutto G,Guardigli M,et al.Experimental simulation of gas generation from coals and a marine kerogen[J].Chemical Geology,1995,126(3/4):247-260.
[28]Hu Guoyi,Wang Weisheng,Liao Fengrong.Geochemical characteristics and its influencing factors of light hydrocarbon in coal-derived gas:A case study of Sichuan Basin[J].Acta Petrologica Sinica,2012,28(3):905-916.[胡国艺,汪为胜,廖凤蓉.煤成气轻烃地球化学特征及其影响因素——以四川盆地须家河组为例[J].岩石学报,2012,28(3):905-916.]
[29]Kissin Y V.Catagenesis of light cycloalkanes in petroleum[J].Organic Geochemistry,1990,15(6):575-594.
[30]Mango F D.The origin of light cycloalkanes in petroleum[J].Geochimicaet Cosmochimica Acta,1990,54(1):23-27.
[31]Hill R J,TangY,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[32]Tissot B P,Durand B,Espitalie,et al.Influence of the nature and diagenesis of organic matter in formation of petroleum[J].AAPG Bulletin,1974,58(3):499-506.
[33]Hunt J M,Huc A Y,Whelan J K.Generation of light hydrocarbons in sedimentary rocks[J].Nature,1980,288(5792):688-690.
[34]Hu Guoyi,Li Jin,Li Zhisheng,et al.Composition and carbon isotopic distribution characteristics of light hydrocarbon in coal-derived gas and natural gas exploration[J].Acta Petrolei Sinica,2010,31(1):42-48.

[1] Ming ZHU, Ze-liang LIANG, Jian MA, Zhi-chao PANG, Jun WANG, Yue JIAO. Patterns of hydrocarbon generation and reservoir distribution in the Jurassic strata, Sikeshu Sag, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(4): 488-497.
[2] Yang HAN, Xian-zhi GAO, Fei ZHOU, Bo WANG, Jun ZHU, Li-feng DUAN. Thermal evolution of Jurassic source rocks and their impact on hydrocarbon accumulation in the northern margin of Qaidam Basin, NW China [J]. Natural Gas Geoscience, 2020, 31(3): 358-369.
[3] Kang Guang-xing, Xu Xue-min, Wang Shuang-qing, Yang Jia-jia, Sun Wei-lin, Shen Bin, Qin Jing, Lu Ran, Zhang Xiao-tao, Guo Wang. Experimental study on thermal evolution of kerogen in Paleozoic#br# #br# Experimental study on thermal evolution of kerogen in Paleozoic#br# [J]. Natural Gas Geoscience, 2019, 30(4): 593-602.
[4] Xiong Xiao-feng, Xu Xin-de, Guo Xiao-xiao, Liang Gang, Luo Wei. Controlling effects of sedimentation on organic matter maturation in Yinggehai Basin [J]. Natural Gas Geoscience, 2016, 27(12): 2169-2175.
[5] LIU Hui-hu,HU Bao-lin,XU Hong-jie,ZHANG Wen-yong,ZHENG Kai-ge,CHENG Qiao. Tectonic-thermal Evolution Characteristics of Permian Mud Shale in Panxie Mining Area of Huainan [J]. Natural Gas Geoscience, 2015, 26(9): 1696-1704.
[6] JIANG Qiang,ZHU Chuan-qing,QIU Nan-sheng,CAO Huan-yu. Paleo-heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin,SW China [J]. Natural Gas Geoscience, 2015, 26(8): 1563-1570.
[7] ZHONG Jia-ai,CHEN Guo-jun,Lv Cheng-fu,YANG Wei,XU Yong,YANG Shuang,XUE Lian-hua. Experimental Study of the Impact on Methane Adsorption Capacity of Continental Shales with Thermal Evolution [J]. Natural Gas Geoscience, 2015, 26(7): 1414-1421.
[8] WU Wei,WANG Yu-han,CAO Gao-she,HUANG Xue-feng,LIU Wei-qing. The Geochemical Characteristics of The Carboniferous and Permian Source Rocks in the Western Henan,the southern North China Basin [J]. Natural Gas Geoscience, 2015, 26(1): 128-136.
[9] ZHUO Qin-gong, ZHAO Meng-jun, LI Yong, LU Xue-song, FANG Shi-hu. The Delay of Paleogene Evaporate on the Gas Generation Peak of Source Rocks and Its Significance in Kuqa Foreland Basin [J]. Natural Gas Geoscience, 2014, 25(12): 1903-1912.
[10] ZHENG Jian-jing,GAO Zhan-dong,WANG Ya-dong,ZHENG You-wei,LIU Xing-wang,GUAN Bao-wen. Application Progress of Structure-Thermochronology in Petroliferous Basin Analysis [J]. Natural Gas Geoscience, 2014, 25(10): 1491-1498.
[11] ZHOU Li-hong,YU Xue-min,JIANG Wen-ya,HUA Shuang-jun,ZOU Lei-luo,YU Chao. Overpressure Retardation of the Thermal Evolution of Paleogene Source Rocks and Its Significance for Petroleum Geology in Qikou Sag [J]. Natural Gas Geoscience, 2013, 24(6): 1118-1124.
[12] YU Yong-li,XU You-de,XIAO Yong-jun,YU Hai-yang,XIU An-peng,HAN Zhi-ning. The Controlling Effect of Source Rock Thermal Evolution on Hydrocarbon Accumulationin Dongling Area of Changling Depression,Songliao Basin [J]. Natural Gas Geoscience, 2013, 24(4): 712-718.
[13] GONG De-yu, XU Guo-sheng, ZHOU Dong-hong, YUAN Hai-feng, LI Jian-ping, GUO Yong-hua. Distribution Characteristics and Main Controlling Factors of Natural Gases in Liaodong Bay, East China [J]. Natural Gas Geoscience, 2013, 24(2): 388-397.
[14] MAO Rong,MI Jing-kui,ZHANG Shui-chang,HE Kun. Study on the Hydrocarbon Generation Characteristics of DifferentCoaly Source Rocks by Gold-tube Pyrolysis Experiments [J]. Natural Gas Geoscience, 2012, 23(6): 1127-1134.
[15] YU Xue-Min, HE Yong-Mei, JIANG Wen-Ya, LIU Qiang-Xin, LIANG Bo-Xun, ZOU Lei-La. Hydrocarbon Generation of Paleogene Source Rocks in Qikou Sag [J]. Natural Gas Geoscience, 2011, 22(6): 1001-1008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[8] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[9] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .
[10] . THE APPLICATION AND EFFECTIVENESS EVALUATION OF DOUBLE-STEP HORIZONTAL WELLS  IN SUPER-DEEP AND SUPER-THIN MARGIN RESERVOIR OF TARIM[J]. Natural Gas Geoscience, 2006, 17(2): 230 -232 .