天然气地球科学 ›› 2021, Vol. 32 ›› Issue (9): 1410–1420.doi: 10.11764/j.issn.1672-1926.2021.06.002

• 天然气开发 • 上一篇    

致密气储层流体赋存与气水共渗规律实验

李彬册1,2(),赖枫鹏1,2(),赵立斌3,许东东3,逯广腾1   

  1. 1.中国地质大学(北京)能源学院,北京 100083
    2.非常规天然气能源地质评价与开发工程北京市重点实验室,北京 100083
    3.中国石油新疆油田公司勘探开发研究院,新疆 克拉玛依 834000
  • 收稿日期:2021-02-23 修回日期:2021-05-27 出版日期:2021-09-10 发布日期:2021-09-14
  • 通讯作者: 赖枫鹏 E-mail:libince@163.com;laifengpeng@163.com
  • 作者简介:李彬册(1998-),男,吉林榆树人,硕士研究生,主要从事非常规油气储层评价及开发方法研究. E-mail:libince@163.com.
  • 基金资助:
    国家自然科学基金面上项目“致密气储层渗透率瓶颈区表征及气相相对渗透率改善方法研究”(51774255);国家科技重大专项“十三五”课题“致密油气藏数值模拟新方法与开发设计”(2017ZX05009-005)

Experiment on fluid occurrence and gas-water flow in tight gas reservoir

Bince LI1,2(),Fengpeng LAI1,2(),Libin ZHAO3,Dongdong XU3,Guangteng LU1   

  1. 1.School of Energy Resources,China University of Geosciences,Beijing 100083,China
    2.Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering,Beijing 100083,China
    3.Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
  • Received:2021-02-23 Revised:2021-05-27 Online:2021-09-10 Published:2021-09-14
  • Contact: Fengpeng LAI E-mail:libince@163.com;laifengpeng@163.com
  • Supported by:
    The National Natural Science Foundation of China(51774255);the China National Science and Technology Major Project(2017ZX05009-005)

摘要:

致密气储层气水关系复杂,气井产能会随着气井见水而迅速降低。为明确致密气储层流体赋存与气水共渗规律,以定北区块和大牛地区块致密气储层为研究对象,采用渗吸、离心、核磁共振和气水驱替等实验方法,研究压裂过程中流体含量变化、动态分布以及生产过程中气水两相共渗规律。结果表明:在压裂过程中,致密气储层岩心对压裂液的自发渗吸先快后慢,流体先进入较小孔隙中,流体分布随渗吸时间增大而更加集中。在返排过程中,较大孔隙中的流体在返排时优先排出,存在可动流体向束缚流体的转变。同时还分析了储层物性参数与流体赋存的关系,渗吸量、返排率与岩石物性存在正相关关系。定北区块气水相渗曲线束缚水饱和度大,共渗区小,在生产过程中储层内气水两相干扰严重,见水后气相相对渗透率迅速降低。

关键词: 致密气储层, 流体赋存, 动态分布, 模拟返排, 气水相渗

Abstract:

In order to clarify the law of fluid occurrence and gas water co-permeability in tight gas reservoirs, tight gas reservoirs in Dingbei block and Daniudi block were taken as the research objects, and the experimental methods of imbibition, centrifugation, NMR and gas water displacement were used to study the change and dynamic distribution of fluid content during fracturing and flowback, as well as the law of gas water two-phase flow during production. The results show that: In the process of fracturing, the spontaneous imbibition of tight gas reservoir cores to fracturing fluid is first fast and then slow. The fluid first enters smaller pores, then the fluid distribution becomes more concentrated. In the process of flowback, the fluid in larger pores is preferentially discharged, and some movable fluid becomes bound fluid. At the same time, there is a positive correlation between imbibition capacity, flowback rate and rock physical properties. The gas-water relative permeability curves of the Dingbei block have large irreducible water saturation and small co-permeability area. During the production process, the gas-water two-phase interference in the reservoir is serious, and the gas relative permeability decreases rapidly after water breakthrough

Key words: Tight gas reservoir, Fluid occurrence, Dynamic distribution, Simulated backflow, Gas-water relative permeability

中图分类号: 

  • TE122.2+3

表1

实验样品基本信息"

岩心编号层位孔隙度/%渗透率/(10-3 μm2岩心体积/cm3
1H19.890.8924.39
2H13.600.3125.17
3H19.490.2525.26
4H15.670.1624.37
5H15.680.1224.51
6H19.521.1030.92
7H110.331.2030.92
8H24.860.4326.43
9H33.920.3231.70
10S14.130.3231.03
11S25.810.3929.95
12T27.211.0627.16
13T23.060.8320.94
14T28.300.7924.58
15T26.700.3621.83
16T26.700.3520.51
17T25.140.1220.96
18T24.390.0628.98
19T21.530.1033.66

图1

渗吸—离心—核磁实验流程"

表2

模拟工作液矿化度及溶质组成(g/L)"

类型KClNaClCaCl2Na2SO4矿化度
工作液10.7256.5253.1251.22511.600
工作液21.5259.4508.1250.00019.100

图2

渗吸量随时间的变化曲线"

图3

渗吸过程中核磁共振T2谱曲线"

图4

核磁共振曲线T2谱截止法示意"

图5

离心过程中含水饱和度变化曲线"

图6

离心过程中核磁共振T2谱示意"

图7

离心实验前后核磁共振T2谱对比"

图8

Ⅰ型气水相渗曲线"

图9

Ⅱ型气水相渗曲线"

图10

岩心最终渗吸量与岩石物性参数散点图"

图11

离心返排率与岩石物性参数散点图"

表3

饱和岩心核磁共振T2谱统计"

石盒子组岩心太原组岩心
岩心 编号曲线类型弛豫时间 /ms岩心 编号曲线类型弛豫时间 /ms
1双峰型1~10012单峰型10~500
2双峰型1~10013单峰型1~100
3双峰型1~10014单峰型10~100
4单峰型3~10015单峰型10~100
5单峰型1~10016单峰型10~250
6双峰型1~10017单峰型10~100
7双峰型1~10018单峰型10~100
8双峰型1~10019单峰型10~100
9单峰型1~25

图12

各类型归一化气水相渗曲线"

表4

归一化气水相渗曲线特征值统计"

曲线类型Swi/%KrgSwiKrwSgr等渗点含水饱和度/%等渗点相对渗透率共渗区范围/%
Ⅰ型640.820.64730.2064~82
Ⅱ型550.610.22730.0955~84
1 李海洋,赵国伟.2020年中国石油和化学工业经济运行报告[J].现代化工,2021,41(3):251-253.
LI H Y, ZHAO G W. Economic operation report of China's petroleum and chemical industry in 2020[J]. Modern Chemical Industry, 2021,41(3):251-253.
2 贾爱林,何东博,位云生,等.未来十五年中国天然气发展趋势预测[J].天然气地球科学,2021,32(1):17-27.
JIA A L, HE D B, WEI Y S, et al. Predictions on natural gas development trend in China for the next fifteen years[J].Natural Gas Geoscience,2021,32(1):17-27.
3 李剑,佘源琦,高阳,等.中国天然气产业发展形势与前景[J].天然气工业,2020,40(4):133-142.
LI J, SHE Y Q, GAO Y, et al. Natural gas industry in China:Development situation and prospect[J].Natural Gas Industry,2020,40(4):133-142.
4 孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向[J].石油勘探与开发,2019,46(6):1015-1026.
SUN L D, ZOU C N, JIA A L, et al. Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1015-1026.
5 魏新善,胡爱平,赵会涛,等.致密砂岩气地质认识新进展[J].岩性油气藏,2017,29(1):11-20.
WEI X S, HU A P, ZHAO H T, et al. New geological understanding of tight sandstone gas[J].Lithologic Reservoirs,2017,29(1):11-20.
6 冀光,贾爱林,孟德伟,等.大型致密砂岩气田有效开发与提高采收率技术对策——以鄂尔多斯盆地苏里格气田为例[J].石油勘探与开发,2019,46(3):602-612.
JI G, JIA A L, MENG D W, et al. Technical strategies for effective development and gas recovery enhancement of a large tight gas field: A case study of Sulige Gas Field, Ordos Basin, NW China[J].Petroleum Exploration and Development,2019,46(3):602-612.
7 吴松涛,林士尧,晁代君,等.基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J].天然气地球科学,2019,30(8):1222-1232.
WU S T, LIN S Y, CHAO D J, et al. Fluid mobility evaluation based on pore structure investigation in tight sandstones: Case study of Upper Triassic Chang 6 tight sandstones in Huaqing area, Ordos Basin[J]. Natural Gas Geoscience,2019,30(8):1222-1232.
8 魏赫鑫,赖枫鹏,蒋志宇,等.延长致密气储层微观孔隙结构及流体分布特征[J].断块油气田,2020,27(2):182-187.
WEI H X, LAI F P, JIANG Z Y, et al. Micropore structure and fluid distribution characteristics of Yanchang tight gas reservoir[J]. Fault-Block Oil & Gas Field,2020,27(2):182-187.
9 MAO G T, LAI F P, LI Z P, et al.Characteristics of pore structure of tight gas reservoir and its influence on fluid distribution during fracturing[J].Journal of Petroleum Science and Engineering,2020,193:107360.
10 LAI F P,LI Z P,WEI Q,et al.Experimental investigation of spon-taneous imbibition in a tight reservoir with nuclear magnetic re-sonance testing[J].Energy & Fuels,2016,30(11):8932-8940.
11 朱华银,徐轩,安来志,等.致密气藏孔隙水赋存状态与流动性实验[J].石油学报,2016,37(2):230-236.
ZHU H Y, XU X, AN L Z, et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs[J]. Acta Petrolei Sinica,2016,37(2):230-236.
12 朱华银,徐轩,高岩,等.致密砂岩孔隙内水的赋存特征及其对气体渗流的影响——以松辽盆地长岭气田登娄库组气藏为例[J].天然气工业,2014,34(10):54-58.
ZHU H Y, XU X, GAO Y, et al. Occurrence characteristics of tight sandstone pore water and its influence on gas seepage: A case study from the Denglouku gas reservoir in the Changling Gas Field, southern Songliao Basin[J].Natural Gas Industry,2014,34(10):54-58.
13 叶礼友,高树生,杨洪志,等.致密砂岩气藏产水机理与开发对策[J].天然气工业,2015,35(2):41-46.
YE L Y, GAO S S, YANG H Z, et al. Water production mechanism and development strategy of tight sandstone gas reservoirs[J].Natural Gas Industry,2015,35(2):41-46.
14 LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification: An NMR fluid typing method[J].Marine and Petroleum Geology,2018,96:591-601.
15 LI M, GUO Y H, LI Z F, et al. Pore-throat combination types and gas-water relative permeability responses of tight gas sandstone reservoirs in the Zizhou area of east Ordos Basin, China[J].Acta Geologica Sinica:English Edition,2019,93(3):622-636.
16 莫邵元,何顺利,雷刚,等.致密气藏气水相对渗透率理论及实验分析[J].天然气地球科学,2015,26(11):2149-2154.
MO S Y, HE S L, LEI G, et al. theoretical and experimental analysis of gas-water relative permeability in tight gas[J]. Natural Gas Geoscience,2015,26(11):2149-2154.
17 周锴,孙卫,王证,等.苏里格气田东区中二叠统盒8—山1段致密砂岩储层相渗特征及影响因素[J].天然气勘探与开发,2016,39(2):31-35,10-11.
ZHOU K, SUN W, WANG Z, et al. Relative-permeability characteristics of tight sandstone reservoir from Shihezi 8 to Shanxi 1 members, eastern Sulige Gas Field[J]. Natural Gas Exploration and Development,2016,39(2):31-35,10-11.
18 罗顺社,彭宇慧,魏新善,等.苏里格气田致密砂岩气水相渗曲线特征与分类[J].西安石油大学学报:自然科学版,2015,30(6):55-61,9.
LUO S S, PENG Y H, WEI X S, et al. Characteristics and classification of gas-water relative permeability curves of tight sandstone reservoirs in Sulige Gas Field[J]. Journal of Xi'an Shiyou University:Natural Science Edition,2015,30(6):55-61,9.
19 SHANLEY K W, CLUFF R M, ROBINSON J W. Factors controlling prolific gas production from low-permeability sandstone reservoirs:Implications for resource assessment, prospect development, and risk analysis[J].AAPG Bulletin,2004,88(8):1083-1121.
20 张杰,李熙喆,高树生,等.致密砂岩气藏产水机理及其对渗流能力的影响[J].天然气地球科学,2019,30(10):1519-1530.
ZHANG J, LI X Z, GAO S S, et al.Water production mechanism of tight sandstone gas reservoir and its influence on percolation capacity[J].Natural Gas Geoscience,2019,30(10):1519-1530.
[1] 张世铭, 王建功, 张小军, 张婷静, 曹志强, 杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358.
[3] 刘登科, 孙卫, 任大忠, 张茜, 明红霞, 陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146.
[4] 田夏荷, 屈红军, 刘新社, 杨欢, 董文武, 陈雅晖. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨[J]. 天然气地球科学, 2016, 27(11): 2005-2012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马应海,苟兰涛,何晓霞,刘芙蓉. 四氢呋喃水合物零度以上生成动力学研究[J]. 天然气地球科学, 2006, 17(2): 244 -248 .
[2] 谢增业, 杨威, 胡国艺, 李志生, 孙庆伍. 四川盆地天然气轻烃组成特征及其应用[J]. 天然气地球科学, 2007, 18(5): 720 -725 .
[3] 王少飞,安文宏,陈鹏,刘道天,梁鸿军. 苏里格气田致密气藏特征与开发技术[J]. 天然气地球科学, 2013, 24(1): 138 -145 .
[4] 王欣,齐梅,李武广,胡永乐,刘佳,赵凯. 基于分形理论的页岩储层微观孔隙结构评价[J]. 天然气地球科学, 2015, 26(4): 754 -759 .
[5] 刘宇,夏筱红,李伍,李家宏. 重庆綦江地区龙马溪组页岩孔隙特征与页岩气赋存关系探讨[J]. 天然气地球科学, 2015, 26(8): 1596 -1603 .
[6] 李忠兴,李健,屈雪峰,李宪文,雷启鸿,樊建明. 鄂尔多斯盆地长7致密油开发试验及认识[J]. 天然气地球科学, 2015, 26(10): 1932 -1940 .
[7] 胡勇, 李熙喆, 万玉金, 焦春艳, 徐轩, 郭长敏, 敬伟. 裂缝气藏水侵机理及对开发影响实验研究[J]. 天然气地球科学, 2016, 27(5): 910 -917 .
[8] . 《天然气地球科学》2018-3期封面及目次[J]. 天然气地球科学, 2018, 29(3): 1 -2 .
[9] 尹帅, 李爱荣, 陈梦娜, 赵金利, 丁文龙, 赵靖舟, 曹翔宇. 强变形区走滑断裂带伸展—聚敛应力效应构造解析及控气作用[J]. 天然气地球科学, 2018, 29(11): 1568 -1574 .
[10] 《天然气地球科学》-期封面及目次. 《天然气地球科学》2018-11期封面及目次[J]. 天然气地球科学, 2018, 29(11): 8111 -8112 .