天然气地球科学 ›› 2021, Vol. 32 ›› Issue (5): 772–780.doi: 10.11764/j.issn.1672-1926.2021.02.003

• 天然气勘探 • 上一篇    

浅水三角洲河道砂体叠置关系的地震识别——以鄂尔多斯盆地东缘临兴S区为例

陈诚(),齐宇,喻梓靓,王波   

  1. 中海油研究总院有限责任公司,北京 100028
  • 收稿日期:2020-07-29 修回日期:2021-01-27 出版日期:2021-05-10 发布日期:2021-04-27
  • 作者简介:陈诚(1990-),男,陕西延安人,工程师,博士,主要从事油气田开发地质研究.E-mail:mqx1415@126.com.

Seismic identification of superposition relationship of the shallow water delta channel sand bodies: Case study of Linxing S area in eastern Ordos Basin

Cheng CHEN(),Yu QI,Zi-liang YU,Bo WANG   

  1. CNOOC Research Institute,Beijing 100028,China
  • Received:2020-07-29 Revised:2021-01-27 Online:2021-05-10 Published:2021-04-27

摘要:

稀井网、大井距条件下进行地下砂体的刻画与表征是油气田开发初期的难点。以地震资料为主导,通过井震结合,利用波形指示反演技术,对鄂尔多斯盆地东缘临兴S区上石盒子组浅水三角洲分流河道砂体的边界及叠置关系进行识别,明确分流河道的叠置关系及其影响因素。研究表明:分流河道叠置类型受控于A/S值和河道能量,在地震剖面上识别出强能独立砂体、高能侧向切割砂体、垂向切叠砂体及高能叠置砂体4类高能叠置关系的砂体和低能叠置砂体、低侧向拼接砂体、低能孤立砂体3类低能叠置关系的砂体。与低能环境下发育的砂体相比,高能环境的砂体规模较大,物性较好,优质储层易发育。利用该方法进行砂体叠置关系识别,能有效地为砂体和气藏的预测提供依据,从而指导井网部署。

关键词: 河道叠置, 浅水三角洲, 波形指示反演, 鄂尔多斯盆地, 砂体预测

Abstract:

The research of characterization of underground sand bodies under the conditions of sparse well pattern and large well spacing is difficult in the initial stage of oil and gas field development. This paper takes seismic data as the leading factor, combines wells and earthquakes, and uses waveform indicator inversion technology to identify the boundary and superimposition relationship of the distributary channel sand bodies in the upper Shihezi Formation in the Linxing S area, and clarifies the superimposition of distributary channels, relationship and its influencing factors. The superimposed type of distributary channel is controlled by A/S and channel energy. Four types of high-energy independent sand bodies, high-energy laterally cut sand bodies, vertical tangentially stacked sand bodies, and high-energy superposed sand bodies are identified on the seismic profile. There are three types of low-energy superimposed sand bodies: Superposed sand bodies and low-energy superposed sand bodies, low lateral spliced sand bodies, and low-energy isolated sand bodies. Compared with sand bodies developed in low-energy environments, sand bodies in high-energy environments have a larger scale and better physical properties, and high-quality reservoirs are easy to develop. Using this method to identify the superposition relationship of sand bodies can effectively provide a basis for sand body and gas reservoir prediction and guide well pattern deployment.

Key words: Superposition relationship of channels, Shallow water delta, SMI, Ordos Basin, Sand body prediction

中图分类号: 

  • TE122.14

图1

研究区位置"

图2

不同砂体厚度和砂体组合关系正演模型注:正演子波:主频35 Hz,零相位;砂岩速度:4 600 m/s,密度:2.5 g/cm3;泥岩速度:3 800 m/s,密度:2.6 g/cm3"

图3

波形指示模拟反演效果与原始地震资料对比"

图4

在不同A/S值和能量条件下分流河道的叠置关系"

图5

临兴S区浅水三角洲河道叠置关系模板"

图6

上石盒子组岩性综合柱状图"

图7

浅水三角洲砂体发育模式及砂体预测平面展布(a)河道复合体反演剖面图;(b)河道复合体反演平面叠合图;(c)河道复合体叠置关系图"

1 朱筱敏,潘荣,赵东娜,等.湖盆浅水三角洲形成发育与实例分析[J].中国石油大学学报:自然科学版,2013,37(5):7-14.
ZHU X M, PAN R, ZHAO D N, et al. Formation and development of shallow-water deltas in lacustrine basin and typical case analyses[J]. Journal of China University of Petroleum,2013,37(5):7-14.
2 陈诚,朱怡翔,石军辉,等.断陷湖盆浅水三角洲的形成过程与发育模式——以苏丹Muglad盆地Fula凹陷Jake地区AG组为例[J].石油学报,2016,37(12):1508-1517.
CHEN C, ZHU Y X, SHI J H, et al. The forming process and development pattern of shallow water delta in fault depression basin: A case study of AG Formation in the Jake area in Fula Sag, Muglad Basin, Sudan[J]. Acta Petrolei Sinica,2016,37(12):1508-1517.
3 曾洪流,赵贤正,朱筱敏,等.隐性前积浅水曲流河三角洲地震沉积学特征——以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J].石油勘探与开发,2015,42(5):566-576.
ZENG H L, ZHAO X Z, ZHU X M, et al. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang Sag in Jizhong Depression, Bohai Bay Basin, NE China[J]. Petroleum Exploration and Development, 2015,42(5):566-576.
4 胡光义,范廷恩,梁旭,等.河流相储层复合砂体构型概念体系、表征方法及其在渤海油田开发中的应用探索[J].中国海上油气,2018,30(1):89-98.
HU G Y, FAN T E, LIANG X, et al. Concept system and characterization method of compound sandbody architecture in fluvial reservoir and its application exploration in development of Bohai Oilfield[J]. China Offshore Oil and Gas, 2018,30(1):89-98.
5 霍春亮,叶小明,高振南,等.储层内部小尺度构型单元界面等效表征方法[J].中国海上油气,2016,28(1):54-59.
HUO C L,YE X M, GAO Z N, et al. Equivalent characterization method of small scale reservoir configuration unit interface[J]. China Offshore Oil and Gas, 2016,28(1):54-59.
6 闫百泉,张鑫磊,于利民,等.基于岩心及密井网的点坝构型与剩余油分析[J].石油勘探与开发,2014,41(5):597-604.
YAN B Q, ZHANG X L, YU L M, et al. Point bar configuration and residual oil analysis based on core and dense well pattern[J].Petroleum Exploration and Development,2014,41(5):597-604.
7 付晶,吴胜和,王哲,等.湖盆浅水三角洲分流河道储层构型模式:以鄂尔多斯盆地东缘延长组野外露头为例[J].中南大学学报:自然科学版, 2015,46(11):4174-4182.
FU J, WU S H, WANG Z, et al. Architecture model of shallow-water delta distributary channel in lake basin: A case study of the Yanchang Formation outcrops in the eastern margin of Ordos Basin[J]. Journal of Central South University: Science and Technology, 2015,46(11):4174-4182.
8 徐振华,吴胜和,刘钊,等.浅水三角洲前缘指状砂坝构型特征——以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例[J],石油勘探与开发, 2019,46(2):322-333.
XU Z H,WU S H,LIU Z, et al. Sandbody architecture of the bar finger within shoal water delta front: Insights from the Lower Member of Minghuazhen Formation, Neogene, Bohai BZ25 Oilfield, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019,46(2):322-333.
9 朱如凯,白斌,袁选俊,等.利用数字露头模型技术对曲流河三角洲沉积储层特征的研究[J],沉积学报,2013,31(5):867-877.
ZHU R K, BAI B, YUAN X J, et al. A new approach for outcrop characterization and geostatistical analysis of meandering channels sandbodies within a delta plain setting using digital outcrop models: Upper Triassic Yanchang tight sandstone Formation, Yanhe outcrop, Ordos Basin[J]. Acta Sedimentologica Sinica, 2013,31(5):867-877.
10 曹淞,冯晅,鹿琪,等.探地雷达在古河道砂岩体沉积储层刻画中的应用[J].世界地质, 2016,35(1):223-234.
CAO S, FENG X, LU Q, et al. Application of GPR in depicting sedimentary reservoir of paleochannel sandstone bodies[J]. Global Geology, 2016,35(1):223-234.
11 吴穹螈,吴胜和,秦国省,等.密井网条件下钙质胶结条带空间展布研究[J].西南石油大学学报:自然科学版, 2017,39(4):71-80.
WU Q Y, WU S H, QIN G S, et al. Study on spatial distribution of calcite-cemented strips under close well-spacing conditions[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2017,39(4):71-80.
12 江远鹏,张岚,吴穹螈,等.渤海南部海域朵叶状浅水三角洲储层构型表征[J].特种油气藏,2020,27(6):88-95.
JIANG Y P, ZHANG L, WU Q Y,et al. The shallow water delta sand body development model and sand body prediction plane distribution map[J].Special Oil & Gas Reservoirs,2020,27(6):88-95.
13 范廷恩,胡光义,马良涛,等.利用不确定性高精度反演数据表征曲流河储层构型[J].石油地球物理勘探, 2017,52(3):573-582,598,7.
FAN T E, HU G Y, MA L T, et al. Architecture pattern characterization of meandering river reservoirs based on high-resolution geostatistics inversion[J]. Oil Geophysical Prospecting, 2017,52(3):573-582,598,7.
14 黎祺,胡明毅.地震沉积学在河流—三角洲沉积相及有利砂体预测方面的应用[J].天然气地球科学,2014,25(9):1341-1349.
LI Q, HU M Y. Application of seismic sedimentology in river-delta facies and sandstone body prediction[J]. Natural Gas Geoscience, 2014,25(9):1341-1349.
15 徐兆辉,胡素云,王露,等.地震沉积学在不同沉积相和储集层研究中的应用[J].古地理学报, 2020,22(4):727-743.
XU Z H,HU S Y,WANG L, et al. The application of seismic sedimentology in studying different sedimentary facies and reservoirs[J]. Journal of Palaeogeography,2020,22(4):727-743.
16 井涌泉,蔡文涛,王海峰,等.基于地震波形结构特征的浅水三角洲砂体构型预测[J].地球物理学进展,2020,35(6):2359-2366.
JING Y Q,CAI W T,WANG H F,et al. Prediction of shallow water delta sand body configuration based on architectural feature of seismic waveform[J]. Progress in Geophysics,2020,35(6):2359-2366.
17 王夏斌,姜在兴,胡光义,等.浅水三角洲分流河道沉积模式分类[J].地球科学与环境学报,2020,42(5):654-667.
WANG X B, JIANG Z X, HU G Y, et al. Classification of sedimentary models of distributary channels in shallow-water deltas[J], Journal of Earth Sciences and Environment, 2020,42(5):654-667.
18 陈彦虎,毕建军,邱小彬,等.地震波形指示反演方法及其应用[J].石油勘探与开发, 2020,47(6):1149-1158.
CHEN Y H, BI J J, QIU X B, et al. A method of seismic meme inversion and its application[J]. Petroleum Exploration and Development, 2020,47(6): 1149-1158.
19 杜伟维,金兆军,邸永香.地震波形指示反演及特征参数模拟在薄储层预测中的应用[J].工程地球物理学报,2017,14(1):56-61.
DU W W, JIN Z J, DI Y X, et al. The application of seismic waveform indicator inversion and characteristic parameter simulation to thin reservoir prediction[J]. Chinese Journal of Engineering Geophysics, 2017,14(1):56-61.
20 胡光义,范廷恩,陈飞,等.从储层构型到“地震构型相”——一种河流相高精度概念模型的表征方法[J].地质学报, 2017,91(2):465-478.
HU G Y, FAN T E, CHEN F, et al. From reservoir architecture to seismic architecture facies: Characteristic method of a high-resolution fluvial facies model[J]. Acta Geologica Sinica,2017,91(2):465-478.
[1] 王华, 崔越华, 刘雪玲, 强阵阵, 王世成. 致密砂岩气藏多层系水平井立体开发技术——以鄂尔多斯盆地致密气示范区为例[J]. 天然气地球科学, 2021, 32(4): 472-480.
[2] 刘桂珍, 高伟, 尉加盛, 唐文. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382-392.
[3] 郭广山, 柳迎红, 李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学, 2021, 32(3): 416-422.
[4] 李松, 刘玲, 吴疆, 王琳霖, 张智礼. 鄂尔多斯盆地南部山西组—下石盒子组致密砂岩成岩演化[J]. 天然气地球科学, 2021, 32(1): 47-56.
[5] 李渊, 丁熊, 王兴志, 李元昊, 余杭航. 鄂尔多斯盆地延长组长8段浅水三角洲砂体结构特征[J]. 天然气地球科学, 2021, 32(1): 57-72.
[6] 景辅泰, 罗霞, 杨智, 张丽君, 李士祥, 陈勇, 曾云锋. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845.
[7] 于洲, 周进高, 丁振纯, 魏柳斌, 魏源, 吴兴宁, 吴东旭, 王少依, 李维岭. 鄂尔多斯盆地中东部奥陶系马五41a储层特征及成因[J]. 天然气地球科学, 2020, 31(5): 686-697.
[8] 苏洲, 刘永福, 韩剑发, 杨淑雯, 刘博, 赖鹏, 彭鹏, 张慧芳, 易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用[J]. 天然气地球科学, 2020, 31(2): 295-306.
[9] 刘瑞, 郭少斌, 王继远. 烃源岩TOC计算模型——以鄂尔多斯盆地太原组—山西组为例[J]. 天然气地球科学, 2020, 31(11): 1628-1636.
[10] 宋昆鹏,罗静兰,刘新社,侯云东,盛伟琰,曹江骏,毛倩茹. 鄂尔多斯盆地西南部上古生界致密砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2020, 31(11): 1562-1573.
[11] 付玲,李建忠,徐旺林,郭玮,李宁熙,张月巧,宋微,孙远实. 鄂尔多斯盆地中东部奥陶系盐下深层储层特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1548-1561.
[12] 梁晓伟,关梓轩,牛小兵,关平,淡卫东,冯胜斌,尤源,周树勋. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学, 2020, 31(10): 1489-1500.
[13] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[14] 张春林, 李剑, 陈鑫, 吴庆超. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019, 30(9): 1263-1271.
[15] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李美俊;王铁冠;刘 菊;张梅珠;卢 鸿;马庆林;高黎惠 . 北部湾盆地福山凹陷天然气成因与来源[J]. 天然气地球科学, 2007, 18(2): 260 -265 .
[2] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1 -8 .
[3] 郭建钢;方琳浩;何周;刘振宇;史基安 . 准噶尔盆地乌夏地区三叠系油气成藏控制因素分析[J]. 天然气地球科学, 2008, 19(05): 647 -651 .
[4] 王杰;刘文汇;秦建中;张隽;申宝剑. 苏北盆地黄桥CO2气田成因特征及成藏机制[J]. 天然气地球科学, 2008, 19(06): 826 -834 .
[5] 夏明军, 曾大乾, 邓瑞健, 姜贻伟, 毕建霞, 靳秀菊, 谭国华, 苗菁. 普光气田长兴组台地边缘礁、滩沉积相及储层特征[J]. 天然气地球科学, 2009, 20(4): 549 -556,562 .
[6] 江厚顺, 张祎. 高5块低渗油气田产量预测方法分析[J]. 天然气地球科学, 2010, 21(3): 385 -388 .
[7] 姜文利, 赵素平, 张金川, 叶欣. 煤层气与页岩气聚集主控因素对比[J]. 天然气地球科学, 2010, 21(6): 1057 -1060 .
[8] 肖杨, 刘道平, 谢应明, 樊燕, 钟栋梁.
二氧化碳水合物最新研究进展
[J]. 天然气地球科学, 2007, 18(4): 607 -610 .
[9] 张卫东,郭敏,姜在兴. 页岩气评价指标与方法[J]. 天然气地球科学, 2011, 22(6): 1093 -1099 .
[10] 黄亮. 川东南坳褶带清虚洞组优质储层发育主控因素分析[J]. 天然气地球科学, 2012, 23(3): 508 -513 .