天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1548–1561.doi: 10.11764/j.issn.1672-1926.2020.08.007

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地中东部奥陶系盐下深层储层特征及主控因素

付玲1(),李建忠1,徐旺林1,郭玮2,李宁熙1,张月巧1,宋微1,孙远实1   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油长庆油田分公司,陕西 西安 710018
  • 收稿日期:2020-07-20 修回日期:2020-08-19 出版日期:2020-11-10 发布日期:2020-11-25
  • 作者简介:付玲(1989-),女,甘肃天水人,高级工程师,博士,主要从事沉积学及储层地质学研究. E-mail:Fuling@petrochina.com.cn.
  • 基金资助:
    国家重点研发计划“深地资源勘查开采”重点专项(2018YFC0603706);国家科技重大专项“下古生界—前寒武系碳酸盐岩油气成藏规律、关键技术及目标评价”(2016ZX05004);中国石油勘探与生产分公司科技项目“鄂尔多斯盆地新层系新领域研究与有利区带评价”(kt20180401)

Characteristics and main controlling factors of Ordovician deep subsalt reservoir in central and eastern Ordos Basin

Ling FU1(),Jian-zhong LI1,Wang-lin XU1,Wei GUO2,Ning-xi LI1,Yue-qiao ZHANG1,Wei SONG1,Yuan-shi SUN1   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.PetroChina Changqing Oil Field Branch Company,Xi’an 710018,China
  • Received:2020-07-20 Revised:2020-08-19 Online:2020-11-10 Published:2020-11-25

摘要:

鄂尔多斯盆地奥陶系盐下深层白云岩储层近年来取得较好的勘探效果,具有一定勘探前景。综合运用岩心观察、铸体薄片、扫描电镜、物性分析、压汞等资料,对盆地中东部奥陶系盐下深层马家沟组马三段、马四段储层特征及其发育的主控因素展开研究。结果表明:马三段储层以海退蒸发环境的含膏云岩为主,马四段储层以海侵环境的灰质云岩、粉—细晶云岩为主;马四段、马三段主要储集空间类型分别为溶孔(溶洞)、晶间孔、晶间溶孔、微裂隙;微裂隙、膏模孔、溶孔和粒间孔;孔隙结构复杂,毛管压力曲线形态可划分为溶孔型、晶间(溶)孔型、微裂隙型和微孔型4种类型;现有资料显示马三段—马四段平均孔隙度分别为2.1%和2.3%,平均渗透率分别为0.19×10-3 μm2和0.22×10-3 μm2。中央古隆起、乌审旗—靖边次级古隆起以及神木—子洲低隆带控制了马三段—马四段沉积相带及有利岩相分布;沉积微相控制岩石原始沉积组构,一定程度影响储层物性,砂屑云岩、晶粒云岩及膏质云岩的储层物性通常相对较好;此外,成岩作用也是控制盐下储层发育的关键因素,多种成因机制下的白云化作用是晶间孔形成的主要方式,表生成岩环境及埋藏成岩环境下的溶蚀作用控制了次生孔隙的发育;燕山期构造活动对储层微裂隙的发育起关键作用,显著改善了储层渗透性。总之,构造背景、岩石组构、成岩作用以及裂缝作用决定了盐下深层储层的储集性能,是优质储层形成的主控因素。

关键词: 鄂尔多斯盆地, 盐下深层储层, 储集空间, 成岩作用, 古隆起, 微裂隙

Abstract:

In recent years, the sub-salt dolomite reservoirs in the Ordovician strata of the Ordos Basin have indicated good exploration results and are expected to have a high hydrocarbon potential. This study targets the Ma 3-Ma 4 reservoirs below the salt rock of the Ordovician in the central and eastern Ordos Basin and investigate the reservoir characteristics and main controlling factors of high-potential reservoirs by combining core observations, cast slabs, scanning electron microscopy, physical property analysis and mercury injection data. The results show that the Ma 3 reservoirs are dominated by gypsum-bearing dolomite deposited in evaporation environments, whereas the Ma 4 reservoirs are dominated by calcite dolomite under transgressive environment. The types of Ma 4 reservoir space mainly include dissolved pores (dissolved holes), intra-crystalline pores, intra-crystalline dissolved pores and microcracks. The types of Ma 3 reservoirs space mainly include microcracks, gypsum mould pore dissolved pores (dissolved holes), and intergranular pores. The pore structures of reservoirs are complex. The capillary pressure curves can be divided into four types, including dissolved pore type, intra-crystalline (dissolved) pore type, microcrack type, and micro-porous type. Based on available information, the average porosity of the Ma 3-Ma 4 reservoirs are 2.1% and 2.3%, respectively, and the average permeability values are 0.19×10-3 μm2 and 0.22×10-3 μm2, respectively. The central paleo-uplift, Wushenqi secondary paleo-uplift and Shenmu low uplift controlled the sedimentary facies and favorable lithofacies distributions. Sedimentary microfacies control rock fabric, and the rock fabric affect physical properties of the reservoirs. The limestone and dolomite reservoirs with gypsum and sand cutting texture have relatively good physical properties. Diagenesis is also a key factor in the development of sub-salt reservoirs. Intra-crystalline pores are mainly formed under various dolomization mechanisms. The surficial and buried diagenetic environments facilitate the formation of a large number of secondary pores, such as dissolved pores (dissolved holes), intra-crystalline dissolved pores, gypsum mould pores. In addition, the Yanshan tectonic activity played a key role in the development of reservoir microcracks. The microcracks can significantly improve reservoir physical properties. We favor that the tectonic setting, rock fabric, diagenetic and microcrack alterations collectively determine the storage capacity of the sub-salt reservoirs and thus are the main controlling factors for the formation of high-quality reservoirs.

Key words: Ordos Basin, Sub-salt reservoirs, Reservoir space, Diagenesis, Paleo-uplift, MicrocrackFoundation items: The National Key R&D Program of China(Grant No. 2018YFC0603706), The National Science and Technology Major Project of China(Grant No.2016ZX05004), The Science and Technology Project of PetroChina Exploration and Production Company(Grant No. kt20180401)

中图分类号: 

  • TE122.1

图1

鄂尔多斯盆地构造分区及研究区位置(a)与中东部地区奥陶系马家沟组地层综合柱状图(b)"

图2

鄂尔多斯盆地中东部西—东向马家沟组岩性组合剖面图[剖面位置见图1(a)]"

图3

马家沟组三段—四段储层岩性特征(a)含石膏泥岩,桃95井,马三段,3 673.5 m;(b)泥质白云岩,桃102井,马三段,4 086.8 m;(c)含膏泥晶白云岩,统8井,马三段,3 734.7 m;(d)细粉晶白云岩,桃61井,马三段,4 122.5 m;(e)泥质泥晶灰岩,亮晶方解石充填裂缝,双168井,马四段,3 046.7 m;(f)含云灰岩,桃61井,马四段,3 963.43 m;(g)泥晶灰岩星散状白云石化,米76井,马四段,2 671.0 m;(h)灰质中晶白云岩,桃61井,马四段,3 962.5 m"

表1

盐下深层马三段—马四段储层矿物组分统计"

层位岩石组分/%样品数/块
方解石白云石硬石膏铁方解石硅质长石类伊利石黄铁矿石英
马三段2.659.731.00.41.00.40.30.20.1159
马四段57.637.90.80.00.30.00.20.00.0299

图4

马三段—马四段储层储集空间类型及其含量分布特征"

图5

马三段—马四段储层储集空间类型显微特征(a)微裂缝,靳9井,马四段,3 661.03 m;(b)多期微裂隙,桃102井,马三段,4 086.8 m;(c)后期被方解石充填的裂隙,统8井,马三段,3 734.7 m;(d)溶孔(溶洞)发育,龙探2井,马三段,2 936.74 m;(e)粉—细晶云岩的晶间孔发育,靳6井,马四段,3 688.43 m;(f)细晶白云岩中的港湾状晶间溶孔,统97井,马四段,3 264.5 m;(g)膏模孔发育,龙探2井,马三段,2 938.17 m;(h)镜下的膏模孔,桃61井,马四段,3 962.5 m;(i)粒间孔,定探2井,马四段,3 968 m"

表2

马三段—马四段储层孔喉结构特征参数(据压汞实验数据)"

层位孔隙度 /%

渗透率

/(10-3 μm2)

均值偏态

分选

系数

中值压力

/MPa

中值半径

/μm

排驱压力

/MPa

最大进汞饱和度

/%

退汞效率

/%

样品数 /个
马三段3.90.1510.90.02.625.00.021.555.326.89
马四段3.30.2113.50.21.218.70.042.585.429.73

图6

马三段—马四段储层孔隙类型及特征"

图7

马三段—马四段储层物性特征及孔渗相关性"

图8

鄂尔多斯盆地中东部东西向地震剖面(G16-13测线位置见图9)"

图9

鄂尔多斯盆地中东部马三—马四段储层厚度及构造叠合图(a) 马三段储层厚度图 (b) 马四段储层厚度图"

图10

鄂尔多斯盆地奥陶系马三段—马四段沉积模式"

图11

鄂尔多斯盆地奥陶系马三段—马四段成岩环境模式"

表3

马三段—马四段裂隙层厚度(据测井解释数据)"

马四段陕50城川1余探1莲121莲6双131双147统79天深1高平1H那1
厚度/m2.614.511.70.912.63.310.632.22.526.9
马三段陕50城川1余探1榆9棋探1龙探2
厚度/m1.37.93.41063.8
1 付斯一,张成弓,陈洪德,等.鄂尔多斯盆地中东部奥陶系马家沟组五段盐下白云岩储集层特征及其形成演化[J].石油勘探与开发,2019,46(6):1087-1098.
FU S Y, ZHANG C G, CHEN H D, et al. Characteristics and formation evolution of subsalt dolomite reservoirs in the fifth member of the Ordovician Majiagou Formation in the central and eastern Ordos Basin[J].Petroleum Exploration and Development, 2019,46 (6): 1087-1098.
2 YANG H, FU S T, WEI X S. Geology and exploration of oil and gas in the Ordos Basin[J] Applied Geophysics, 2004,1(2): 103-109.
3 杨华,刘新社,张道锋,等.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气成藏主控因素及勘探进展[J].天然气工业,2013,33(5):1-12.
YANG H, LIU X S, ZHANG D F. Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration[J].Natural Gas In-dustry, 2013,33 (5):1-12.
4 付金华,吴兴宁,孙六一,等.鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义[J]. 天然气工业, 2017,37(3): 9-16.
FU J H, WU X N, SUN L Y, et al. New understanding of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance [J]. Natural Gas Industry, 2017,37 (3): 9-16.
5 杨华,付金华,魏新善,等.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气勘探领域[J].石油学报,2011,32(5):733-740.
YANG H, FU J H, WEI X S, et al. Exploration of Ordovician marine carbonate gas in the Ordos Basin[J]. Acta Petrolei Sinica,2011,32 (5): 733-740.
6 姚泾利,包洪平,任军峰,等. 鄂尔多斯盆地奥陶系盐下天然气勘探[J]. 中国石油勘探,2015,20(3):1-12.
YAO J, BAO H P, REN J F, et al. Exploration of Ordovician subsalt natural gas reservoirs in Ordos Basin[J]. China Petroleum Exploration,2015,20(3):1-12.
7 王从玮. 鄂尔多斯盆地中部奥陶系中组合盐下储层特征及主控因素[D]. 北京:中国石油大学(北京), 2016.
WANG C W. Characteristics and Main Controlling Factors of Subsalt Reservoirs in the Middle Ordovician in the Central Ordos Basin[D].Beijing:China University of Petroleum (Beijing), 2016.
8 贾亚妮,李振宏,郑聪斌,等.鄂尔多斯盆地东部奥陶系盐下储层预测[J].石油物探,2006,45(5):472-475.
JIA Y N, LI Z H, ZHENG C B, et al. Prediction of Ordovician subsalt reservoirs in the eastern Ordos Basin[J].Geophysical Prospecting for Petroleum, 2006,45 (5): 472-475.
9 蔡克汉,刘峰,张娜,等.鄂尔多斯盆地中东部盐下储层预测关键技术[J].石油地球物理勘探,2018,53(6):1263-1268.
CAI K H, LIU F, ZHANG N, et al. Key technologies for prediction of subsalt reservoirs in the central and eastern parts of Ordos Basin[J].Petroleum Geophysical Prospecting, 2018,53 (6): 1263-1268.
10 姚泾利,王程程,陈娟萍,等.鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J].天然气地球科学,2016,27(12):2115-2126.
YAO J L, WANG C C, CHEN J P, et al. Distribution characteristics of carbonate source rocks under salt in Majiagou Formation of Ordos Basin[J].Natural Gas Geoscience, 2016,27 (12) : 2115-2126.
11 夏明军,郑聪斌,戴金星,等.鄂尔多斯盆地东部奥陶系盐下储层及成藏条件分析[J].天然气地球科学,2007,18(2):204-208.
XIA M J, ZHENG C B, DAI J X, et al. Analysis of Ordovician subsalt reservoirs and accumulation conditions in the eastern Ordos Basin[J].Natural Gas Geoscience, 2007,18 (2): 204-208.
12 左智峰,熊鹰,何为,等.鄂尔多斯盆地中部马五段盐下储层成岩作用与孔隙演化[J].地质科技情报,2019,38(5):155-164.
ZUO Z F, XIONG Y, HE W, et al. Diagenesis and pore evolution of subsalt reservoirs in the Ma 5 Member of the central Ordos Basin[J].Geological Science and Technology Intelligence, 2019, 38 (5): 155-164.
13 吴东旭,孙六一,周进高,等.鄂尔多斯盆地西缘克里摩里组白云岩储层特征及成因[J].天然气工业,2019,39(6):51-62.
WU D X, SUN L Y, ZHOU J G, et al. Characteristics and genesis of dolomite reservoirs in the Cremori Formation in the western margin of Ordos Basin[J].Natural Gas Industry, 2019,39 (6): 51-62.
14 李雅雯,王兴志,展燕,等.埋藏条件下碳酸盐岩储层溶蚀作用实验模拟——以鄂尔多斯盆地西缘奥陶系碳为例[J].海洋地质前沿,2020,36(2):43-52.
LI Y W, WANG X Z, ZHAN Y, et al. Experimental simulation of dissolution of carbonate reservoirs under burial conditions: A case study of Ordovician carbon in the western margin of the Ordos Basin[J]. Marine Geology Frontiers, 2020, 36 (2): 43-52.
15 李国蓉. 从成岩角度看鄂尔多斯马家沟组碳酸盐岩中的裂缝及其储集意义[J].岩相古地理,1997,17(3):46-53.
LI G R. Diagenesis of the carbonate rocks of the Majiagou Formation in the Ordos Basin: Fractures and their implications for oil and gas storage[J]. Sedimentary Facies and Palaeogeography,1997,17(3):46-53.
16 苗胜东. 鄂尔多斯盆地中东部奥陶系中下组合构造特征及控气性[D].西安:西安石油大学,2018.
MIAO S D. Structural Characteristics and Controlling Gas of Ordovician Middle Lower Assemblages in Eastern and Middle Ordos Basin[D]. Xi’an:Xi’an Shiyou University, 2018.
17 张春林,李剑,陈鑫,等. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019,30(9):1263-1271.
ZHANG C L, LI J, CHEN X, et al. Palaeogeomorphological restoration of Orodovician subsalt and its controlling effect on beach bodies, eastern Ordos Basin[J]. Natural Gas Geoscience, 2019,30(9):1263-1271.
18 周进高,席胜利,邓红婴,等. 鄂尔多斯盆地寒武系—奥陶系深层海相碳酸盐岩构造—岩相古地理特征[J]. 天然气工业,2020,40(2):41-53.
ZHOU J G, XI S L, DENG H Y, et al. Tectonic-lithofacies paleogeographic characteristics of Cambrian-Ordovician deep marine carbonate rocks in the Ordos Basin[J]. Natural Gas Industry,2020,40(2):41-53.
19 张亚金,张湘娟,张振伟,等.古城地区奥陶系鹰山组白云岩储层特征及其控制因素[J].大庆石油地质与开发, 2020,39(4): 1-8.
ZHANG Y J, ZHANG X J, ZHANG Z W,et al. Dolomite reservoir characteristics and controlling factors of the Ordovician Yingshan Formation in Gucheng area[J]. Daqing Petroleum Geology and Development, 2020,39(4): 1-8.
20 杨晓兰.南大西洋中段两岸盆地盐下油气成藏特征对比[J].海洋石油,2019,39(3):1-8.
YANG X L. Comparison of hydrocarbon accumulation characteristics between subsalt basins on both sides of the basin in the middle South Atlantic[J]. Offshore Oil, 2019,39 (3): 1-8.
21 何保,燕亚东,禚喜准,等.柴达木盆地石灰沟地区下古生界碳酸盐岩储层特征及控制因素[J].海相油气地质,2019,24(1):35-43.
HE B, YAN Y D, ZHUO X Z, et al. Characteristics and controlling factors of carbonate reservoirs in the Lower Paleozoic in Limegou area, Qaidam Basin[J]. Marine Petroleum Geology, 2019, 24 (1): 35-43.
22 康洪全,吕杰,程涛,等.巴西桑托斯盆地盐下湖相碳酸盐岩储层特征[J].海洋地质与第四纪地质,2018,38(4):170-178.
KANG H Q, LV J, CHENG T, et al. Characteristics of the carbonate reservoirs in the salt lakes of the Santos Basin, Brazil[J]. Marine Geology and Quaternary Geology, 2018,38 (4): 170-178.
23 丁茜,何治亮,沃玉进,等.高温高压条件下碳酸盐岩溶蚀过程控制因素[J].石油与天然气地质,2017,38(4):784-791.
DING Q, HE Z L, WO Y J, et al. Control factors of carbonate rock dissolution process under high temperature and pressure conditions[J]. Oil & Gas Geology, 2017,38 (4): 784-791.
24 杨晓林.逆冲带盐下碳酸盐岩储层预测[D]. 北京:中国石油大学(北京),2016.
YANG X L. Pre-salt Carbonate Reservoir Prediction in the Thrust Belt[D]. Beijing: University of Petroleum (Beijing),2016.
25 郭栋. 坎波斯盆地盐下含油气系统分析与资源评价[D]. 北京:中国石油大学(北京),2016.
GUO D. Analysis and Resource Evaluation of Subsalt Petroleum System in Campos Basin[D]. Beijing:China University of Petroleum (Beijing), 2016.
26 赵国祥,王清斌,杨波,等.渤中凹陷奥陶系深埋环境下碳酸盐岩溶蚀成因分析[J].天然气地球科学,2016,27(1):111-120.
ZHAO G X, WANG Q B, YANG B, et al. Analysis of carbonate rock dissolution origination in the deep Ordovician environment of Bozhong Sag[J].Natural Gas Geoscience, 2016,27 (1): 111-120.
27 何治亮,马永生,张军涛,等.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质,2020,41(1):1-14.
HE Z L, MA Y S, ZHANG J T, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil and Gas Geology, 2020,41(1):1-14.
28 周生友,许杰,马艳,等.滨里海盆地F区块盐下深层碳酸盐岩相控储层预测[J].中山大学学报:自然科学版,2013,52(4):138-142.
ZHOU S Y, XU J, MA Y, et al. Facies-constrained reservoir prediction of the pre-salt carbonate reservoir deeply buried in F-Block of the Caspain Basin[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013,52(4): 138-142.
29 周振柱. 东营凹陷“盐下”深层温压场演化与油气成藏[D].北京:中国石油大学,2011.
ZHOU Z Z. Evolution of Deep Sub-salt Temperature and Pressure Field and Hydrocarbon Accumulation in Dongying Sag[D].Beijing:China University of Petroleum, 2011.
30 何晓松,孙林,张红斌,等.盐下碳酸盐岩储层礁体识别[J].石油地球物理勘探,2009,44(s1):98-100.
HE X S, SUN L, ZHANG H B, et al. Identification of subsalt carbonate reservoirs and reefs[J].Petroleum Geophysical Prospecting, 2009,44 (s1): 98-100.
[1] 李松, 刘玲, 吴疆, 王琳霖, 张智礼. 鄂尔多斯盆地南部山西组—下石盒子组致密砂岩成岩演化[J]. 天然气地球科学, 2021, 32(1): 47-56.
[2] 李渊, 丁熊, 王兴志, 李元昊, 余杭航. 鄂尔多斯盆地延长组长8段浅水三角洲砂体结构特征[J]. 天然气地球科学, 2021, 32(1): 57-72.
[3] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[4] 景辅泰, 罗霞, 杨智, 张丽君, 李士祥, 陈勇, 曾云锋. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845.
[5] 王珂, 张荣虎, 余朝丰, 杨钊, 唐雁刚, 魏红兴. 塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素[J]. 天然气地球科学, 2020, 31(5): 623-635.
[6] 于洲, 周进高, 丁振纯, 魏柳斌, 魏源, 吴兴宁, 吴东旭, 王少依, 李维岭. 鄂尔多斯盆地中东部奥陶系马五41a储层特征及成因[J]. 天然气地球科学, 2020, 31(5): 686-697.
[7] 刘瑞, 郭少斌, 王继远. 烃源岩TOC计算模型——以鄂尔多斯盆地太原组—山西组为例[J]. 天然气地球科学, 2020, 31(11): 1628-1636.
[8] 宋昆鹏,罗静兰,刘新社,侯云东,盛伟琰,曹江骏,毛倩茹. 鄂尔多斯盆地西南部上古生界致密砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2020, 31(11): 1562-1573.
[9] 梁晓伟,关梓轩,牛小兵,关平,淡卫东,冯胜斌,尤源,周树勋. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学, 2020, 31(10): 1489-1500.
[10] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[11] 张春林, 李剑, 陈鑫, 吴庆超. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019, 30(9): 1263-1271.
[12] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[13] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[14] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
[15] 李阳, 倪小明, 王延斌, 陶传奇. 鄂尔多斯盆地临兴地区上古生界压力特征及其成因机制[J]. 天然气地球科学, 2019, 30(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[5] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[6] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[7] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[8] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[9] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[10] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .