天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 923–930.doi: 10.11764/j.issn.1672-1926.2020.04.030

• 简讯 • 上一篇    下一篇

天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用

席斌斌1,2(),申宝剑1,2,蒋宏1,2,杨振恒1,2,王小林3   

  1. 1.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126
    2.中国石油化工集团公司油气成藏重点实验室,江苏 无锡 214126
    3.南京大学地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2019-12-20 修回日期:2020-01-11 出版日期:2020-07-10 发布日期:2020-07-02
  • 作者简介:席斌斌(1981-),男,山东邹城人,高级工程师,硕士,主要从事流体包裹体地质学研究. E-mail:xibb.syky@sinopec.com.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(2017ZX05036)

The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir

Bin-bin XI1,2(),Bao-jian SHEN1,2,Hong JIANG1,2,Zhen-heng YANG1,2,Xiao-lin WANG3   

  1. 1.Wuxi Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China
    2.SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
    3.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2019-12-20 Revised:2020-01-11 Online:2020-07-10 Published:2020-07-02
  • Supported by:
    China National Science and Technology Major Project(2017ZX05036)

摘要:

CH4-H2O-NaCl体系不混溶包裹体群被广泛应用于恢复天然气成藏期的捕获温度及压力。前人提出了针对富气端元包裹体和富水溶液端元包裹体的不同的捕获温压恢复方法。为对比2类包裹体捕获温压恢复的效果,在对前人方法进行梳理的基础上,以四川盆地南部YA井志留系龙马溪组黑色页岩中的石英—方解石为例,通过详细的岩相学分析,选择同一FIA(流体包裹体组合)的富气端元包裹体和富水溶液端元包裹体进行了捕获温度、压力恢复。结果表明:同一FIA的2类包裹体恢复的捕获温度、压力结果分布范围基本一致,呈现出捕获温度变化范围较窄(212.0~220.7 ℃)但捕获压力变化范围较大(90~152 MPa)的特点,表明流体压力在石英—方解石形成时可能存在较大的波动。上述流体压力的波动可能受脉体形成时有机质裂解增压以及裂隙多次张开—愈合的综合影响。

关键词: CH4-H2O-NaCl体系, 不混溶包裹体, 捕获温度, 捕获压力, 四川盆地南部, 页岩气

Abstract:

The CH4-H2O-NaCl immiscible fluid inclusions are widely applied to determine the trapping temperature and pressure in natural gas reservior, and different methods are used for gas end member inclusions and aqueous end member inclusions. Two end member fluid inclusions in the same FIA (Fluid Inclusion Assemblage) were applied to determine the trapping temperature and pressure of CH4-rich fluid inclusions hosted in quartz-calcite veins in Silurian Longmaxi black shales from Well YA, southern Sichuan basin. Results show that the trapping temperature and pressure of these two end member fluid inclusions exhibit simlar ranges, which are from 212.0 ℃ to 220.7 ℃ and from 90 MPa to 152 MPa, respectively. The large variation in fluid pressure may result from the hydrocarbon-generating pressurization and fracture opening and healing process.

Key words: CH4-H2O-NaC system, Immiscible fluid inclusions, Trapping temperature, Trapping pressure, Southern Sichuan Basin, Shale gas

中图分类号: 

  • TE122.3

图1

甲烷压力校正实验装置简图"

图2

v1(CH4)峰位与压力之间的关系"

图3

YA井龙马溪组黑色页岩中方解石—石英脉显微照片(a)方解石石英脉;(b)石英发育次生加大边;(c)石英粒间充填方解石;(d)—(f)不同气液比包裹体共生,其中(f)为(e)红框部分放大"

图4

YA井龙马溪组黑色页岩中赋存于石英脉中的包裹体拉曼光谱图"

图5

石英方解石脉中包裹体均一温度和盐度分布直方图"

表1

包裹体拉曼分析、显微测温数据以及捕获压力恢复结果"

序号包裹体类型νmeasCH4/cm-1

νmeasNe12??972.416

/cm-1

νmeasNe22??851.389

/cm-1

νcorrCH4/cm-1室温下内压/MPa冰点温度/℃气液比/%捕获温度/℃捕获压力/MPa
1富水溶液包裹体2 915.882 973.112 8522 915.225 2211.349-3.810.5217.5116.93
22 916.112 973.222 852.12 915.349 8510.844-3.810.2213111.13
32 915.862 972.842 851.692 915.493 8510.309-3.910.4213.1103.88
42 915.962 972.722 851.62 915.699 589.444-3.911.6220.791.06
5\\\\\-3.7/212\
6\\\\\-4/212.2\
7富气包裹体2 912.512 973.232 852.122 911.737 6138.444\/212~220.794.5~96.0
82 912.172 972.932 851.742 911.737 7238.444\/94.5~96.0
92 912.022 973.122 851.982 911.372 9944.98/109.7~112.6
102 9122 972.982 851.92 911.462 6942.81/104.8~107.5
112 911.442 973.12 851.952 910.818 663.29/148.2~151.8
122 911.642 973.32 852.162 910.813 5263.35/148.3~152.0
1 DUBESSY J, BUSCHAERT S, LAMB W, et al.Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins[J].Chemical Geology, 2001, 173(1-3):193-205.
2 DUAN Z, MAO S D. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2 000 bar[J].Geochimica et Cosmochimica Acta,2006,70(13):3369-3386.
3 刘斌.流体包裹体热力学[M].北京:地质出版社,1999,207-249.
LIU B. Fluid Entrapment Thermodynamics[M].Beijing: Geological Publishing House,1999:207-249.
4 LIU D H, DAI J X, XIAO X M, et al. High density methane inclusions in Puguang Gas Field: Discovery and a T-P genetic study[J].Chinese Science Bulletin, 2009, 54(24): 4714-4723.
5 髙键,何生,易积正.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质,2015,36(3):472-480.
GAO J, HE S, YI J Z. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015, 36(3):472-480.
6 席斌斌,腾格尔,俞凌杰,等.川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J].石油实验地质,2016,38(4):473-479.
XI B B, TENGER, YU L J,et al.Trapping pressure of fluid inclusions and its significance in shale gas reservoirs south-eastern Sichuan Basin[J].Petroleum Geology & Experiment, 2016, 38(4):473-479.
7 席斌斌,余晓露,王杰,等.川东北元坝地区储层溶洞石英及白云石胶结物中包裹体特征及意义[J].地质学报,2017,91(9):2091-2104.
XI B B, YU X L, WANG J,et al.Characters and geological significance of fluid inclusions in quartz and dolomite cement of Yuanba gas reservoir, NE-Sichuan[J], Acta Geologica Sinica,2017,91(9):2091-2104.
8 QIU Y, WANG X L, LIU X, et al. In situ Raman spectroscopic quantification of CH4-CO2 mixture: Application to fluid inclusions hosted in quartz veins from the Longmaxi Forma-tion shales in Sichuan Basin,southwestern China[J].Petroleum Science, 2020,17:23-35.
9 MAO S D, HU J W, ZHANG D H,et al.Thermodynamic modeling of ternary CH4-H2O-NaCl fluid inclusions[J]. Chemical Geology Journal,2013,335(6):128-135.
10 FALL A,EICHHUBL P, CUMELLA S P, et al. Testing the basin-centered gas accumulation model using fluid inclusion observations:Southern Piceance Basin, Colorado[J]. AAPG Bulletin, 2012, 96(12):2297-2318.
11 FALL A, EICHHUBL P, BODNAR R J, et al.Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin,Colorado[J].Bulletin of the Geological Society of America, 2015, 127(1-2):61-75.
12 FALL A, BODNAR R J. How precisely can the temperature of a fluid event be constrained using fluid inclusions?[J]. Economic Geology, 2019, 113(8):1817-1843.
13 施伟军,席斌斌.应用包裹体技术恢复气藏古压力[J].石油实验地质,2016,38(1):128-134.
SHI W J, XI B B.Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology & Experiment,2016,38(1):128-134.
14 LU W J,CHOU I M,BURRUSS R C,et al.A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta,2007,71(16):3969-3978.
15 CHOU I M, SONG Y C, BURRUSS R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material[J]. Geochimica et Cosmochimica Acta, 2008, 72(21):5217-5231.
16 GOLDSTEIN R H, REYNOLDS T. Systematics of Fluid Inclusions in Diagenetic Minerals.SEPM Short Course[M]. Tulsa: Society for Sedimentary Geology, 1994:87-122.
17 DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta,1992, 56(7): 2605-2617.
18 HALL D L, STERNER S M, BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1):197-202.
19 曹海涛,詹国卫,余小群,等.深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例[J].天然气工业,2019,39(S1):118-122.
CAO H T,ZHAN G W,YU X Q,et al. The main factors affecting the productivity of deep shale gas wells-Take the Yongchuan Block in the south of Sichuan Basin as an example[J].Natural Gas Industry,2019,39(S1):118-122.
20 聂海宽,张金川,包书景,等.页岩气成藏体系研究——以四川盆地及其周缘下寒武统为例[J].西安石油大学学报:自然科学版, 2012, 27(3): 8-14.
NIE H K, ZHANG J C, BAO S J, et al. Study on the accumulation systems of shale gas: Taking the Lower Cambrian in Sichuan Basin and its periphery as an example[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2012, 27(3): 8-14.
21 郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):29-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J].Petroleum Exploration and Development, 2014,41(1):29-36.
22 何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学, 2017, 28(5): 724-733.
HE Z L, HU Z Q, NIE H K,et al. Characterization of shale gas enrichment in Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience,2017,28(5):724-733.
23 腾格尔,申宝剑,俞凌杰,等.四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J].石油勘探与开发,2017,44(1):69-78.
TENGER, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
24 潘占昆,刘冬冬,黄治鑫,等.川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J]. 石油科学通报, 2019,4(3):242-253.
PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin[J]. Petroleum Science Bulletin, 2019, 4(3):242-253.
25 刘洪林,王红岩,方朝合,等.中国南方古老海相页岩气超压富集特征及勘探开发意义[J].非常规油气,2014,1(1): 11-16.
LIU H L, WANG H Y, FANG C H, et al. The characteristics of over-pressure reservoir for older South China marine shale and its significance for exploration[J]. Unconventional Oil & Gas, 2014,1(1): 11-16.
26 YANG R, HE S, HU Q H, et al. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China)[J]. International Journal of Coal Geology, 2017, 171(1):1-11.
27 李文,何生,张柏桥,等.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415.
LI W, HE S, ZHANG B Q, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415.
[1] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[2] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[3] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[4] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[5] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[6] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[7] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[8] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[9] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[10] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[11] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[12] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[13] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[14] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[15] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈军, 陈静, 李娜, 王忠泉. 准噶尔盆地东部石炭系天然气勘探潜力[J]. 天然气地球科学, 2020, 31(7): 952 -961 .
[2] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962 -969 .