天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 1004–1015.doi: 10.11764/j.issn.1672-1926.2020.05.001

• 非常规天然气 • 上一篇    下一篇

中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义

邵德勇1(),张六六2,张亚军2,张瑜1,罗欢2,乔博2,闫建萍2,张同伟1()   

  1. 1.西北大学地质学系, 大陆动力学国家重点实验室,陕西 西安 710069
    2.兰州大学地质科学与矿产资源学院,甘肃 兰州 730000
  • 收稿日期:2020-01-14 修回日期:2020-05-05 出版日期:2020-07-10 发布日期:2020-07-02
  • 通讯作者: 张同伟 E-mail:shaody1989@163.com;zhangtw@lzu.edu.cn
  • 作者简介:邵德勇(1989-),男,浙江杭州人,博士后,主要从事非常规页岩油气研究. E-mail: shaody1989@163.com.
  • 基金资助:
    国家自然科学基金重点项目“中国南方寒武系页岩有机质、流体和孔隙演化耦合机制研究”(41730421)

The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration

De-yong SHAO1(),Liu-liu ZHANG2,Ya-jun ZHANG2,Yu ZHANG1,Huan LUO2,Bo QIAO2,Jian-ping YAN2,Tong-wei ZHANG1()   

  1. 1.State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
    2.School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2020-01-14 Revised:2020-05-05 Online:2020-07-10 Published:2020-07-02
  • Contact: Tong-wei ZHANG E-mail:shaody1989@163.com;zhangtw@lzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(41730421)

摘要:

以中上扬子地区下寒武统富有机质页岩为研究对象,分别选取位于寒武系页岩气勘探突破区的湖北宜昌和四川威远2个地区的3个钻井/露头剖面(宜昌WPZK001井剖面、长阳露头剖面和威远W001?4井剖面)和目前勘探失利区的2个典型剖面(贵州开阳剖面和重庆酉阳剖面)共37件样品,开展岩石小柱体的吸水实验,并与四川盆地志留系龙马溪组富有机质页岩进行对比研究。结果表明:寒武系页岩气勘探突破区的下寒武统水井沱组/筇竹寺组富有机质页岩与四川盆地志留系龙马溪组富有机质页岩相似,其饱和吸水量主要受有机碳含量和石英含量的控制,表现出较好的正相关关系,而寒武系页岩气勘探失利区的下寒武统牛蹄塘组富有机质页岩的饱和吸水量则与黏土矿物和碳酸盐矿物含量表现出弱的正相关关系,与有机碳含量和石英含量均无明显相关关系。这不仅指示了研究区下寒武统富有机质页岩发育孔隙网络特征,特别是有机质孔隙的发育,存在显著差异,同时也为从富有机质页岩矿物组成及其成因来源与孔隙发育耦合机制方面来探讨寒武系页岩含气性变化提供了新的研究思路。

关键词: 中上扬子地区, 下寒武统, 页岩气, 吸水实验

Abstract:

In this study, 37 samples of Lower Cambrian shale collected from different sections involving shale gas exploration-breakthrough areas (Well WPZK001 from Yichang City, Changyang section from Hubei Province, and Well W001-4 from Weiyuan County) and -failure areas (Kaiyang section from Guizhou Province and Youyang section from Chongqing City) both in the Middle-Upper Yangtze region were investigated by water uptake experiments, with a similar comparative study of Silurian Longmaxi shale samples in the Sichuan Basin. The comparative results showed that the water uptake content for the Lower Cambrian organic-rich shale samples from shale gas exploration-breakthrough areas are primarily controlled by TOC content, showing a positive correlative increase of water content and TOC content, which is similar to that of Silurian Longmaxi organic-rich shale samples in the Sichuan Basin. In contrast, the water uptake content for the Lower Cambrian organic-rich shale samples from shale gas exploration-failure areas generally showed a positive correlation with clay and carbonate contents, and there is no correlation with TOC content. It implies that the characteristics of pore network in the Lower Cambrian organic-rich shales from Middle-Upper Yangtze region, especially the development of organic matter-hosted pores, display significant differences regionally. Importantly, it provides a newly-developed strategy on the study of gas content variation in Cambrian shale from Middle-Upper Yangtze region by investigating the coupling mechanism of pore development and mineral composition as well as origins in organic-rich shales.

Key words: Middle-Upper Yangtze region, Lower Cambrian, Shale gas, Water uptake experiment

中图分类号: 

  • TE122

图1

下寒武统富有机质页岩采样剖面位置(据文献[11,29]修改)(1)湖北宜昌WPZK001井剖面;(2)湖北长阳露头剖面;(3)重庆酉阳露头剖面;(4)贵州开阳钻井剖面;(5)四川威远W001-4井剖面"

表1

中上扬子不同地区下寒武统剖面和四川长宁剖面龙马溪组页岩样品TOC和饱和吸水量"

采样剖面/地层编号TOC/%饱和吸水量/(mg/g岩石)采样剖面编号TOC/ %

饱和吸水量/

(mg/g岩石)

湖北长阳剖面/

水井沱组

CY-040.323.39

重庆酉阳剖面/

牛蹄塘组

DQ-036.8828.99
CY-130.693.8DQ-0611.3721.78
CY-190.911.62DQ-128.829.55
CY-430.9311.2DQ-217.9329.48
CY-521.244.68DQ-279.3230.12
CY-553.3516.46DQ-345.525.5
CY-592.348.83

贵州开阳剖面/

牛蹄塘组

333.53.6622.74
CY-662.299.77347.76.6719.54

湖北宜昌WPZK井剖面/

水井沱组

WPZK-215.8613.1354.81.8617.6
WPZK-397.7818.33363.82.5324.04
WPZK-445.718.96385.65.6818.73
WPZK-514.3414.68389.23.4814.96
WPZK-811.565.87408.84.8821.74
WPZK-942.614.36

四川长宁剖面/

龙马溪组

CN-SH-015.4523.16

四川威远W001-4井剖面/

筇竹寺组

W-101.7711.69CN-SH-046.9723.71
W-190.316.87CN-SH-083.7115.04
W-460.7811.39CN-SH-093.3814.49
W-550.546.47CN-SH-113.4215.49
W-670.568.5CN-SH-133.3512.99
W-1051.139.84CN-SH-421.1718.02
W-1111.6312.29CN-SH-581.0613.52
W-1343.048.09
W-1411.1812.44
W-1464.5515.05

图2

中上扬子不同地区下寒武统和四川盆地长宁地区下志留统龙马溪组富有机质页岩的吸水曲线(a)贵州开阳剖面牛蹄塘组;(b)重庆酉阳剖面牛蹄塘组;(c)湖北宜昌WPZK001井水井沱组;(d)湖北长阳剖面水井沱组;(e)四川威远W001-4井剖面筇竹寺组;(f)四川长宁剖面龙马溪组"

图3

中上扬子不同地区下寒武统剖面和四川长宁地区下志留统剖面富有机质页岩饱和吸水量与TOC含量的关系(a)贵州开阳剖面牛蹄塘组;(b)重庆酉阳剖面牛蹄塘组;(c)湖北宜昌WPZK001井水井沱组;(d)湖北长阳剖面水井沱组;(e)四川威远W001-4井剖面筇竹寺组;(f)四川长宁剖面龙马溪组"

图4

贵州开阳剖面牛蹄塘组、湖北长阳剖面水井沱组和四川长宁剖面龙马溪组页岩饱和吸水量与矿物组成的关系(a)—(c):贵州开阳剖面牛蹄塘组;(d)—(f):湖北长阳剖面水井沱组; (g)—(i):四川长宁剖面龙马溪组"

图5

贵州开阳剖面牛蹄塘组、湖北长阳剖面水井沱组和四川长宁剖面龙马溪组页岩TOC含量与矿物组成的关系(a)—(c):贵州开阳剖面牛蹄塘组;(d)—(f):湖北长阳剖面水井沱组; (g)—(i):四川长宁剖面龙马溪组"

图6

中上扬子不同地区下寒武统和四川盆地下志留统龙马溪组富有机质页岩发育有机质孔隙情况(a)—(b)牛蹄塘组, 贵州开阳剖面[46];(c)—(d)水井沱组, 湖北宜昌地区秭地1井[47];(e)—(f)筇竹寺组, 川西南地区金页1井[42];(g)—(h)龙马溪组, 四川盆地石柱剖面"

1 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6): 689-701.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges, and prospects (I) [J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
2 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1):19-32.
3 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发,2016,43(4):499-510.
ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4):499-510.
4 王玉芳,冷济高,李鹏,等.黔东北地区下寒武统牛蹄塘组页岩气特征及主控因素分析[J].古地理学报,2016,18(4): 605-614.
WANG Y F, LENG J G, LI P, et al. Characteristics and its main enrichment controlling factors of shale gas of the Lower Cambrian Niutitang Formation in northeastern Guizhou Province[J]. Journal of Palaeogeography,2016, 18(4): 605-614.
5 张同伟,张亚军,贾敏,等.中国南方寒武系海相页岩含气性主控因素的科学问题[J].矿物岩石地球化学通报, 2018, 37(4):572-579.
ZHANG T W, ZHANG Y J, JIA M, et al. Key scientific issues on controlling the variation of gas contents of Cambrian marine shales in southern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2018, 37(4):572-579.
6 陈孝红,王传尚,刘安,等.湖北宜昌地区寒武系水井沱组探获页岩气[J].中国地质,2017,44(1):188-189.
CHEN X H, WANG C S, LIU A, et al. The discovery of the shale gas in the Cambrian Shuijingtuo Formation of Yichang, Hubei Province[J]. Geology in China,2017,44(1):188-189.
7 翟刚毅,包书景,王玉芳,等.古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J].地球学报,2017,38(4):441-447.
ZHAI G Y, BAO S J, WANG Y F, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4):441-447.
8 罗胜元,刘安,李海,等.中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素[J].石油实验地质,2019, 41(1):56-67.
LUO S Y, LIU A, LI H, et al. Gas-bearing characteristics and controls of the Cambrian Shuijingtuo Formation in Yichang area, Middle Yangtze region[J]. Petroleum Geology & Experiment, 2019, 41(1):56-67.
9 王玉满,董大忠,程相志,等.海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业,2014,34(8):1-7.
WANG Y M, DONG D Z, CHENG X Z, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case of the Lower Cambrian Qiongzhusi shale in southern Sichuan Basin[J]. Natural Gas Industry,2014,34(8):1-7.
10 ZHAI G, LI J, JIAO Y, et al. Applications of chemostratigraphy in a characterization of shale gas sedimentary microfacies and predictions of sweet spots:Taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology,2019, 109:547-560.
11 赵建华,金之钧,林畅松,等.上扬子地区下寒武统筇竹寺组页岩沉积环境[J].石油与天然气地质,2019, 40(4):701-715.
ZHAO J H, JIN Z J, LIN C S, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4):701-715.
12 YANG W, ZUO R, JIANG Z, et al. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98:746-762.
13 周文,徐浩,余谦,等.四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J].岩性油气藏, 2016,28(5):18-25.
ZHOU W, XU H, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016,28(5):18-25.
14 焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展[J].高校地质学报,2014,20(1):151-161.
JIAO K, YAO S P, WU H, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014,20(1):151-161.
15 徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征[J].岩性油气藏,2015,27(4):32-39.
XU Y, LV C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin[J]. Lithologic Reservoirs, 2015,27(4):32-39.
16 张涛,张希巍.页岩孔隙定性与定量方法的对比研究[J].天然气勘探与开发,2017,40(4):34-43.
ZHANG T, ZHANF X W. Comparative study on qualitative and quantitative methods for shale pore characterization[J]. Natural Gas Exploration and Development,2017,40(4):34-43.
17 吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015,42(2):167-176.
WU S T, ZHU R K, CUI J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development,2015,42(2):167-176.
18 MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian),Pennsylvania[J].AAPG Bulletin, 2013, 97:177-200.
19 LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in Siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79: 848-861.
20 BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012,103:3-11.
21 CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012,103:26-31.
22 KO L T, LOUCKS R G, ZHANG T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016,100(11):1693-1722.
23 KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology,2018,190:3-28.
24 SHAO D, ZHANG T, KO L T, et al. Experimental investigation of oil generation, retention, and expulsion within Type II kerogen-dominated marine shales: Insights from gold-tube nonhydrous pyrolysis of Barnett and Woodford Shales using miniature core plugs[J]. International Journal of Coal Geology, 2020,217:103337.
25 吕海刚,于萍,闫建萍,等.四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J].天然气地球科学,2015,26(8):1556-1562.
LV H G, YU P, YAN J P, et al. Experimental investigation of water absorption and its significance on pore network connectivity in mudstone from Silurian Longmaxi Formation,Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1556-1562.
26 沈伟军,郭伟,李熙喆,等.水蒸气吸附法和氮气吸附法在表征页岩孔隙结构中的对比分析[J].天然气工业, 2017,37(S1):78-84.
SHEN W J,GUO W,LI X Z, et al.Comparative analysis of water vapor adsorption method and nitrogen adsorption method in characterization of shale pore structure[J]. Natural Gas Industry,2017:37(S1):78-84.
27 张亚军.四川盆地及邻区下古生界海相泥页岩吸水实验研究[D].兰州:兰州大学,2019.
ZHANG Y J. Experimental Study on Water Absorption of Lower Paleozoic Marine Mudstones in Sichuan Basin and Adjacent Areas[D]. Lanzhou: Lanzhou University, 2019.
28 梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16.
LIANG D G, GUO T L, CHEN J P, et al. Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology,2008,13(2):1-16.
29 中国地质调查局.中国页岩气资源调查报告[R].北京:中国地质调查局,2014.http://www.cgs.gov.cn/xwl/ddyw/201603/ t20160309_302195.html.
China Geological Survey. China's shale gas resources survey report[R].Beijing: China Geological Survey,2014.
30 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96:1071-1098.
31 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
32 ZHAO J, HU Q, LIU K, et al. Pore connectivity characterization of shale using integrated wood’s metal impregnation, microscopy, tomography, tracer mapping and porosimetry[J]. Fuel. 2020, 259:116248.
33 冯东,李相方,李靖,等.黏土矿物吸附水蒸气特征及对孔隙分布的影响[J].中国石油大学学报:自然科学版,2018, 42(2):110-118.
FENG D, LI X F, LI J, et al. Water adsorption isotherm and its effects on pore size distribution of clay minerals[J]. Journal of China University of Petroleum,2018, 42(2):110-118.
34 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报:自然科学版, 2014,50(3):476-486.
WANG S F, ZOU C N, DONG D Z, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naruralium Universitis Pekinensis,2014,50(3):476-486.
35 卢龙飞,秦建中,申宝剑,等.川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J].石油实验地质,2016,38(4):460-472.
LU L F, QIN J Z, SHEN B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng–Longmaxi Formation in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(4):460-472.
36 卢龙飞,秦建中,申宝剑,等.中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J].地学前缘,2018, 25(4):226-236.
LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4):226-236.
37 赵建华,金之钧,金振奎,等.四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J].天然气地球科学,2016, 27(2):377-386.
ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience,2016,27(2):377-386.
38 王开亮,李凯强,王励坤,等.四川盆地东缘石柱地区五峰—龙马溪组页岩矿物组分及含气性特征[J].兰州大学学报:自然科学版, 2018, 54(3):285-302.
WANG K L, LI K Q, WANG L K, et al. Mineral composition and gas-bearing characteristics of Wufeng-Longmaxi shale in Shizhu area, eastern Sichuan Basin[J].Journal of Lanzhou University: Natural Sciences,2018, 54(3):285-302.
39 ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J].Journal of Natural Gas Science and Engineering,2017,38:21-38.
40 YANG X Y, YAN D T, WEI X S, et al. Different formation mechanism of quartz in siliceous and argillaceous shales:A case study of Longmaxi Formation in South China[J]. Marine and Petroleum Geology,2018,94:80-94.
41 王淑芳,董大忠,王玉满,等.中美海相页岩气地质特征对比研究[J].天然气地质科学,2015,26(9):1666-1678.
WANG S F, DONG D Z, WANG Y M, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J].Natural Gas Geoscience,2015,26(9):1666-1678.
42 刘忠宝,边瑞康,高波,等.上扬子地区下寒武统页岩有机质孔隙类型及发育特征[J].世界地质, 2019,38(4):999-1011.
LIU Z B, BIAN R K, GAO B, et al. Organic matter pore types and development characteristics of Lower Cambrian shale in Upper Yangtze area[J]. Global Geology,2019,38(4):999-1011.
43 XI Z, TANG S, LI J, et al. Pore characterization and the controls of organic matter and quartz on pore structure: Case study of the Niutitang Formation of northern Guizhou Province, South China[J]. Journal of Natural Gas Science and Engineering,2019,61:18-31.
44 MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin,2012,96(8):1553-1578.
45 牛杏.湘鄂西下寒武统牛蹄塘组石英成因类型及其对页岩储层物性的影响[D].武汉:中国地质大学, 2019.
NIU X. Genetic Types of Quartz and Its Influence on Shale Reservoir Physical Properties of the Lower Cambrian Niutitang Formation in Western Hunan and Hubei[D]. Wuhan: China University of Geoscience, 2019.
46 WU C J, TUO J C, ZHANG L F, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017, 178:13-25.
47 何庆,何生,董田,等.鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素[J].石油实验地质, 2019,41(4):530-539.
HE Q, HE S, DONG T, et al. Pore structure characteristics and controls of Lower Cambrian Niutitang Formation, western Hubei Province[J]. Petroleum Geology & Experiment, 2019,41(4):530-539.
48 刘忠宝,高波,武清钊,等.页岩有机—无机复合型孔隙及其控气作用——以川西南地区筇竹寺组为例[J]. 海相油气地质,2018,23(4):42-50.
LIU Z B, GAO B, WU Q Z, et al. Organic-inorganic compound pore system and its gas-controlling significance: a case study of the Cambrian Qiongzhusi Formation in southwestern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2018, 23(4): 42-50.
[1] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
[2] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[3] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[4] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[5] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[6] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[7] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[8] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[9] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[10] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[11] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[12] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331.
[13] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[14] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[15] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!