天然气地球科学

• 天然气地质学 • 上一篇    下一篇

大型有孔虫壳体对砂岩储集空间及物性的影响——以琼东南盆地松南凹陷三亚组一段为例

马遵青1,2,3,陈国俊1,2 ,杨海长4,李超1,2,赵燚林1,2,3   

  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000;
    2.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    3.中国科学院大学,北京 100049;4.中海油研究总院,北京 100028
  • 收稿日期:2018-12-01 修回日期:2019-01-20 出版日期:2019-05-10
  • 通讯作者: 陈国俊(1967-),男,甘肃武威人,研究员,博士生导师,主要从事储层沉积学研究. E-mail:gjchen@lzb.ac.cn.
  • 作者简介:马遵青(1994-),男,河北任丘人,硕士研究生,主要从事储层沉积学研究.E-mail:mazunq@sohu.com.
  • 基金资助:
    国家科技重大专项“南海北部深水区关键成藏期优质储层形成机理及预测技术”(编号:2016ZX05026-007-005)资助.

Effects of large-foraminiferal shells on sandstone reservoir space and physical properties:Case study of the 1st member of Sanya Formation,Songnan Sag,Qiongdongnan Basin

Ma Zun-qing1,2,3,Chen Guo-jun1,2,Yang Hai-zhang4,Li Chao1,2,Zhao Yi-lin1,2,3   

  1. 1.Northwest Institute of Eco-environment and Resources,Lanzhou 730000,China;
    2.Key Laboratory of Petroleum Resources,Gansu Province/Key laboratory of Petroleum Resources Research,Chinese Academy of Sciences,Lanzhou 730000,China;
    3.University of Chinese Academy of Sciences,Beijing 100049,China;
    4.CNOOC Research Institute,Beijing 100028,China
  • Received:2018-12-01 Revised:2019-01-20 Online:2019-05-10

摘要: 通过岩石薄片、扫描电镜和统计方法研究了琼东南盆地松南凹陷三亚组一段2 565.00~2 576.23m细—中砂岩所含的大型有孔虫化石对岩石储集空间和物性的影响。分析表明,该层段细—中砂岩具有中—低孔、低渗—特低渗的物性特征。大型有孔虫壳体对砂岩储集空间及物性有特殊影响,其抗压实性可减少压实作用对体腔孔隙及壳体格架间孔隙的破坏,使砂岩中的生物体腔孔保有1%~4%的面孔率。但由于有孔虫壳体较大、硬度较小,压实作用可使壳体周边多个碎屑颗粒嵌入有孔虫壳壁,壳体可封堵周边的碎屑粒间孔隙并影响其渗透性;碳酸盐胶结物的碳氧同位素测试发现,δ13C值介于-2.050‰~0.243‰之间,δ18O值介于-9.700‰~-7.624‰之间;古盐度Z值介于118.93~123.67之间,平均值为121.42;碳酸盐形成温度在56.5~64.8℃之间,平均值为62.2℃。测试结果表明,该层砂岩中的碳酸盐胶结物具有海相成岩环境、早成岩阶段的特点。结合薄片有孔虫含量与碳酸盐胶结物含量的正相关关系,以及有孔虫壳体附近碳酸盐胶结物分布较多的现象判断,大型有孔虫壳体为碳酸盐胶结物的形成提供了丰富的物质来源,由此导致的强烈胶结作用是砂岩物性变差的重要原因。

关键词: 大型有孔虫壳体, 储集空间, 物性, 琼东南盆地, 三亚组一段, 砂岩

Abstract: Casting thin-sections,SEM and statistical methods were used to study on the effects of large- foraminiferal fossils on the reservoir space and physical properties of the 1st member of Sanya Formation fine-medium sandstone,2 565.00-2 576.23m in the Well S34,Songnan Sag,Qiongdongnan Basin.The analysis shows that the fine-medium sandstone in this section has the physical characteristics of medium-low porosity,low permeability and ultra-low permeability.Large foraminiferal shells have a special effect on the reservoir space and physical properties of sandstone.Their compaction resistance can reduce the damage of compaction to the pore of coelom cavity and the pore between shell lattices,and conserve 1%-4% of the pore of coelomic cavity in sandstone.However,the foraminiferal shell is large and its hardness is smaller than siliceous debris particles,compaction can make many debris particles around the shell embedded in the foraminiferal shell wall.Foraminiferal shell can seal the debris intergranular pore around the shell and affect its permeability.The stable carbon and oxygen isotope test results of carbonate cements show that the values of δ13C ranged from -2.050‰ to 0.243‰,the values of δ18O ranged from -9.700‰ to -7.624‰,and the values of Z(paleosalinity) ranged from 118.93 to 123.67,with an average value of 121.42.The formation temperature of carbonate cements ranged from 56.5℃ to 64.8℃,with an average of 62.2℃.The carbonate cements are characterized by marine diagenetic environment and early diagenetic stage.Considering the positive correlation of the content between the foraminifera and carbonate cements in thin slices and the distribution of carbonate cements near foraminiferal shells,the large foraminiferal shells provide abundant material sources for the formation of carbonate cements,and the strong cementation caused by them is an important reason for the poor physical properties of sandstones.

Key words: Large foraminifera shell, Reservoir space, Physical properties, Qiongdongnan Basin, The 1st , member of Sanya Formation, Sandstone

中图分类号: 

  • TE122.2+3
[1]Jones R W.Foraminifera and Their Applications[M].London:Cambridge University Press,2014:1-408.
[2]Tian Zepu,Liu Bo,Gao Jixian.Diagenesis of bioclastic carbonates of the Cretaceous Mishrif Formation in the Rumaila Oil Field,Iraq[J].Journal of Stratigraphy,2016,40(1):41-50.
田泽普,刘波,高计县.伊拉克鲁迈拉油田白垩系Mishrif组碳酸盐岩生物碎屑和成岩作用特点[J].地层学杂志,2016,40(1):41-50.
[3]Gao Jixian,Tian Changbing,Zhang Weimin,et al.Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila Oil Field[J].Acta Petrolei Sinica,2013,34(5):843-852.
高计县,田昌炳,张为民,等.伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J].石油学报,2013,34(5):843-852.
[4]Racey A.A review of Eocene Nummulite accumulations:Structure,formation and reservoir potential[J].Journal of Petroleum Geology,2001,24(1):79-100.
[5]Jia Yirong,Wang Tianqi,Dou Yutan,et al.Seismic identification of limestone reservoir in block C of Pelagian Basin[J].Natural Gas Geoscience,2013,24(1):150-155.
贾义蓉,王天奇,窦玉坛,等.Pelagian盆地C区块灰岩储层的地震识别[J].天然气地球科学,2013,24(1):150-155.
[6]Li Juan,Wang Tianqi,Sun Songling,et al.Nummulite limestone reservoir sequence and sedimentary feature,Pelagian Basin[J].Geological Science and Technology Information,2015,34(5):21-26.
李娟,王天奇,孙松领,等.北非Sabratah盆地下始新统El Garia组货币虫灰岩层序地层与沉积模式[J].地质科技情报,2015,34(5):21-26.
[7]Carozzi A V.Depositional models and reservoir properties of Miocene reefs,Visayan Islands,Philippines[J].Journal of Petroleum Geology,1995,18(1):29-48.
[8]Flügel E.Microfacies of Carbonate Rocks:Analysis,Interpretation and Application[M].Second Edition .Translated by Ma Yongsheng,Liu Bo,Guo Rongtao,et al.Beijing:Geological Publishing House,2016:159.
(德)Erik Flügel著,碳酸盐岩微相:分析、解释及应用[M].第二版.马永生,刘波,郭荣涛,等译.北京:地质出版社,2016:159.
[9]He Yan,Hu Pingzhong.Early Miocene large foraminifera from biogenetic reef complexes of Dongsha massif,South China Sea[J].Acta Palaeontologica Sinica,1995,34(1):18-39.
何炎,胡平忠.南海东沙隆起早中新世生物礁中的大有孔虫[J].古生物学报,1995,34(1):18-39.
[10]Tao Weixiang,He Shibin,Zhao Zhigang,et al.Reservoir distribution in deepwater area of the Qiongdongnan Basin[J].Petroleum Geology & Experiment,2006,28(6):554-559.
陶维祥,何仕斌,赵志刚,等.琼东南盆地深水区储层分布规律[J].石油实验地质,2006,28(6):554-559.
[11]Lei Chao,Ren Jianye,Pei Jianxiang,et al.Tectonic framework and mutiple episode tectonic evolution in deepwater area of Qiongdongnan Basin,north continental margin of South China Sea[J].Earth Science:Journal of China University of Geosciences,2011,36(1):151-162.
雷超,任建业,裴健翔,等.琼东南盆地深水区构造格局和幕式演化过程[J].地球科学:中国地质大学学报,2011,36(1):151-162.
[12]Wang Zhenfeng,Li Xushen,Sun Zhipeng.Hydrocarbon accumulation conditions and exploration potential in the deep -water region Qiongdongnan Basin[J].China Offshore Oil and Gas,2011,23(1):7-13,31.
王振峰,李绪深,孙志鹏,等.琼东南盆地深水区油气成藏条件和勘探潜力[J].中国海上油气,2011,23(1):7-13,31.
[13]Zhang Gongcheng,Liu Zhen.Tectonics of Petroliferous Rift Basins in China[M].Beijing:Petroleum Industry Press,2014:417-454.
张功成,刘震.中国含油气裂谷盆地构造[M].北京:石油工业出版社,2014:417-454.
[14]Shao Lei,Li Ang,Wu Guoxuan,et al.Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea[J].Acta Petroleum Sinica,2011,31(4):548-552.
邵磊,李昂,吴国瑄,等.琼东南盆地沉积环境及物源演变特征[J].石油学报,2011,31(4):548-552.
[15]He Jiaxiong,Shi Xiaobin,Xia Bin,et al.The status of the petroleum exploration in the northern South China Sea and the resource potential in the deep-water areas[J].Advances of Earth Sciences,2007,22(3):261-270.
何家雄,施小斌,夏斌,等.南海北部边缘盆地油气勘探现状与深水油气资源前景[J].地球科学进展,2007,22(3):261-270.
[16]Ji Mo,Zhang Gongcheng,Yang Haizhang,et al.Structural pattern and evolution of eastern sag belt,in deep-water area of Qiongdongnan Basin[J].Marine Geology Frontier,2016,30(9):26-35.
纪沫,张功成,杨海长,等.琼东南盆地深水区东区凹陷带结构构造及其演化特征[J].海洋地质前沿,2016,30(9):26-35.
[17]Liao Jihua,Wang Hua,Lv Ming,et al.Evolution of syndepositional faulting and its controlling effect on sedimentary effect on sedimentary filling in Songnan-Baodao Sag of Qiongdongnan Basin,South China Sea[J].Journal of University of Mining & Technology,2016,45(2):336-346.
廖计华,王华,吕明,等.琼东南盆地深水区松南—宝岛凹陷同沉积断裂活动及其对沉积充填的控制[J].中国矿业大学学报,2016,45(2):336-346.
[18]Yu Junfeng,Sun Zhipeng,Zhu Jitian.Cenozoic tectonic phases and their representing shapes in Songnan Sag,Qiongdongnan Basin[J].Natural Gas Geoscience,2010,21(2):281-288.
于俊峰,孙志鹏,朱继田.琼东南盆地松南凹陷新生代重要构造幕及表现形式[J].天然气地球科学,2010,21(2):281-288.
[19]You Junjun,Sun Zhipeng,Li Junliang,et al.Exploration potential of Songnan low-uplift in the deep water region,Qiongdongnan Basin[J].China Mining Magazine,2012,21(8):856-859.
游君君,孙志鹏,李俊良,等.琼东南盆地深水区松南低凸起勘探潜力评价[J].中国矿业,2012,21(8):856-859.
[20]Department of Mineralogy,Petrology and Ore Deposit of East China petroleum Institute.Sedimentary Petrology:Volume 1[M].Beijing:Petroleum Industry Press,1982:112-114.
华东石油学院岩矿教研室主编.沉积岩石学:上册[M].北京:石油工业出版社,1982:112-114.
[21]People’s Republic of China Petroleum and Natural Gas Industry Standard.SY/T 6285-2011 Evaluating Methods of Oil and Gas Reservoir[S].Beijing:National Energy Administration,2011:1-15.
中华人民共和国石油天然气行业标准.SY/T 6285-2011油气储层评价方法[S].北京:国家能源局,2011:1-15.
[22]People’s Republic of China Petroleum and Natural Gas Industry Standard.SY/T 5477-2003 The Division of Diagenetic Stages in Clastic Rocks[S].Beijing:State Economic and Trade Commission of China,2003:1-11.
中华人民共和国石油天然气行业标准.SY/T 5477-2003碎屑岩成岩阶段划分[S].北京:国家经济贸易委员会,2003:1-11.
[23]Keith M L,Weber J N.Carbon and oxygen isotopic composition of selected limestones and fossils[J].Geochimica et Cosmochimica Acta,1964,28(10):1787-1816.
[24]Craig H.The measurement of oxygen isotope paleotemperatures[M]//Tongiorgi E.Stable Isotopes in Oceanographic Studies and Paleotemperatures.Consiglio Nazionale delle Richerche,Laboratorio di Geologia Nucleare,1965:161-182.
[25]Guo Hongli,Wang Darui.Stable isotopic composition and origin analysis of the carbonate cements within sandstone reservoirs of Tarim oil-gas bearing area[J].Petrolum Exploration and Development,1996,26(3):31-32.
郭宏莉,王大锐.塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析[J].石油勘探与开发,1996,26(3):31-32.

[1] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[2] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[3] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[4] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[5] 唐海忠, 魏军, 周在华, 肖文华, 俞海东, 魏浩元. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 2019, 30(5): 652-661.
[6] 李长海, 赵伦, 李伟强, 李建新, 丁宇韬, 李昂, 祁永平. 碳酸盐岩缝合线研究进展及对油气开发的意义[J]. 天然气地球科学, 2019, 30(4): 493-502.
[7] 刘杰, 杨睿, 邬黛黛, 金光荣. 基于生烃思路的微生物成因水合物资源量估算——以琼东南盆地西南深水区为例[J]. 天然气地球科学, 2019, 30(4): 539-548.
[8] 高阳, 王志章, 易士威, 佘源琦, 林世国, 李明鹏, 张春林, . 鄂尔多斯盆地天环地区盒8段致密砂岩岩石矿物特征及其对储层质量的影响[J]. 天然气地球科学, 2019, 30(3): 344-352.
[9] 陈秀艳, 贾进华, 崔文娟, 张立平, 周波, 申银民, 陈延贵. 塔里木盆地哈拉哈塘地区东河砂岩段成岩作用及对孔渗影响[J]. 天然气地球科学, 2019, 30(1): 51-61.
[10] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[11] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[12] 姚淑凡,丁文龙. 胶结物对深水扇含气砂岩地震响应特征的影响[J]. 天然气地球科学, 2018, 29(7): 982-989.
[13] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[14] 金丽娜,于兴河,董亦思,单新,何玉林,林霖. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5): 644-654.
[15] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[2] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[3] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .
[4] MakarovAA;RemizovVV;石?Z;. 俄罗斯新能源政策及天然气的作用[J]. 天然气地球科学, 1997, 8(5-6): 26 -31 .
[5] 聂采军,赵军,夏宏权, 刘之的. 地层破裂压力测井预测的统计模式研究[J]. 天然气地球科学, 2004, 15(6): 633 -636 .
[6] 唐俊伟, 马新华, 焦创斌贝, 范丽宏. 气井产能测试新方法――回压等时试井[J]. 天然气地球科学, 2004, 15(5): 540 -544 .
[7] 傅雪海;秦勇;杨永国;彭金宁;韩训晓;. 甲烷在煤层水中溶解度的实验研究[J]. 天然气地球科学, 2004, 15(4): 345 -348 .
[8] 张敏,王东良,朱翠山,赵红静 . 冀中坳陷苏桥-文安油气田混源油定量识别模式研究(一):原油成因分类及地球化学特征[J]. 天然气地球科学, 2004, 15(2): 115 -119 .
[9] 刘朝露;李剑;方家虎;胡国艺;严启团;李志生;马成华;孙庆武;. 水溶气运移成藏物理模拟实验技术[J]. 天然气地球科学, 2004, 15(1): 32 -36 .
[10] 刘文汇;徐永昌;. 天然气地质学中的氩、碳同位素相关研究[J]. 天然气地球科学, 1997, 8(1): 7 -10 .