天然气地球科学

• 非常规天然气 • 上一篇    下一篇

煤岩弹性力学性质与煤层破裂压力关系

陈立超1,2,王生维2,3   

  1. 1.内蒙古工业大学矿业学院,内蒙古 呼和浩特 010051;
    2.晋煤集团煤与煤层气共采国家重点实验室,山西 晋城 048204;
    3.中国地质大学(武汉)资源学院,湖北 武汉 430074
  • 收稿日期:2018-10-30 修回日期:2018-11-28 出版日期:2019-04-10
  • 作者简介:陈立超(1985-),男,内蒙古赤峰人,副教授,博士,主要从事煤储层压裂改造研究. E-mail:huasheng63@163.com.
  • 基金资助:
    国家科技重大专项(编号:2016ZX05067001-007);山西省煤层气联合研究基金(编号:2016012007);甘肃省油气资源重点实验室开放基金(编号:SZDKFJJ20160606);内蒙古自然科学基金(编号:2016MS0402);内蒙古高等学校科学研究项目(编号:NJZY16090)联合资助.

Relationship between elastic mechanical properties and equivalent  fracture pressure of coal reservoir near wellbore

Chen Li-chao1,2,Wang Sheng-wei2,3   

  1. 1.School of Mining and Technology in Inner Mongolia University of Technology,Hohhot 010051,China;
    2.State Key Laboratory of Coal and CBM Co-mining in Jincheng Anthracite Mining Group,Jincheng 048204,China;
    3.Faculty of Earth Resources in China University of Geosciences,Wuhan 430074,China

  • Received:2018-10-30 Revised:2018-11-28 Online:2019-04-10

摘要: 岩石弹性力学性质是储层水力压裂裂缝起裂的重要力学约束,解译弹性力学性质与煤层破裂压力间的数学关系对于气井压裂设计有一定作用。以沁水盆地郑庄区块51口煤层气井为对象,利用声波时差、体密度测井数据反演了近井煤岩弹性力学参数(弹性模量E、剪切模量G、体积模量K、泊松比v)值,计算了表征煤岩破裂实际耗能情况指标——破裂压力当量(Pt)值。通过数学回归发现:中低弹性模量软煤中弹性力学参数(E、G、K)与Pt呈线性正相关关系;对于高弹性模量(E>6GPa)硬煤,发育天然大裂隙煤层Pt较低且随模量(E、G、K)降低而增高(煤粉的堵塞效应),而致密煤层Pt随煤岩模量增大而快速升高。煤岩泊松比(v)与Pt间的关系则不同,高弹性模量硬煤Pt随煤岩泊松比(v)增大而快速升高,而中低模量软煤Pt先随v减小而升高(煤岩脱水效应),后与v呈正相关关系。

关键词: 煤储层, 弹性力学性质, 破裂压力当量, 水力压裂, 裂缝起裂机制, 郑庄区块, 沁水盆地

Abstract: The elastic mechanical property of rock is a mechanical constraint for the fracture initiation in hydraulic fracturing.51 coalbed methane wells in Zhengzhuang blocks of Qinshui Basin are taken as the object in this paper,the parameters of elasticity mechanics (Young’s modulus E,shear modulus G,bulk modulus K,Poisson’s ratio v) of No.3 coal near wellbore were calculated based on the acoustic,density logging data,and meanwhile the values of equivalent fracture pressure (Pt) which represent energy consumption were figured out.Based on regression,two patterns of relationship between the elastic mechanical parameters (E,G,K) and Pt were proposed.In soft coal with medium and low modulus,there is a positive correlation between them,for high-modulus hard coal,Pt is low when the coal develops natural fracture and Pt increases with the decrease of parameters (E,G,K) with the blockage effect of coal fines,whereas Pt increases rapidly with the increase of parameters (E,G,K) when the coal is stiffness.The relationship between v and Pt in coal is inversely related to above.Pt increases rapidly with the increase of v in high modulus hard coal,while in medium and low modulus soft coal Pt increases with the decrease of  v firstly by the extrusion effect of pore water in coal,and then it is positively correlated with v.

Key words: Coal reservoir, Elastic mechanical properties, Equivalent fracture pressure, Hydraulic fracturing, Fracture initiation mechanism, Zhengzhuang block, Qinshui Basin

中图分类号: 

  • TE312
[1]Wang Hongxun,Zhang Shicheng.Numerical Calculation Method of Hydraulic Fracturing[M].Beijing:Petroleum IndustryPress,1998:1-8.]<br /> 王鸿勋,张士诚.水力压裂数值计算方法[M].北京:石油工业出版社,1998:1-8.<br /> [2]Yu Shaocheng.The Technical Manuals of Hydraulic Fracturing[M].Beijing:Petroleum Industry Press,2010:405-409.<br /> 俞绍诚.水力压裂技术手册[M].北京:石油工业出版社,2010:405-409.<br /> [3]Carmichael R S.Handbook of Physical Properties of Rocks[M].Boca Raton,Florida:CRC Press,1982.<br /> [4]Chen Yong,Lai Delun.Experimental study of the acoustic properties of rocks[J].Chinese Journal of Geotechnical Engineering,1984,6(9):94-101.<br /> 陈颙,赖德伦.实验室中岩石声学性质的测量[J].岩土工程学报,1984,6(9):94-101.<br /> [5]Bian Huiyuan,Wang Fei,Zhang Yonghao,et al.Experimental study of dynamic and static elastic parameters of tight sandstone under reservoir conditions[J].Chinese Journal of Rock Mechanics and Engineering,2015,30(S1):3045-3054.<br /> 边会媛,王飞,张永浩,等.储层条件下致密砂岩动静态弹性力学参数实验研究[J].岩石力学与工程学报,2015,30(增1):3045-3054.<br /> [6]Xiong Jian,Liang Lixi,Liu Xiangjun,et al.Experimental study on acoustic transmission through the Longmaxi Formation shale rock in south region of Sichuan Basin[J].Chinese Journal of Underground Space and Engineering,2014,10(5):1071-1077.<br /> 熊健,梁利喜,刘向君,等.川南地区龙马溪组页岩岩石声波透射实验研究[J].地下空间与工程学报,2014,10(5):1071-1077.<br /> [7]Hao Jialiang,Qin Guangsheng,Cai Qixin.Experimental study on acoustic and elastic parameters of rocks samples in Dongpu Depression[J].Journal of Oil and Gas Technology,2012,34(2):57-61.<br /> 郝加良,秦广胜,蔡启新.东濮凹陷岩石声学和弹性力学参数特性试验研究[J].石油天然气学报,2012,34(2):57-61.<br /> [8]Lu Shikuo,Wang Di,Li Yukun,et al.Research on three-dimensional mechanical parameters distribution of the tight sandstone reservoir in Daniudi Gasfield[J].Natural Gas Geoscience,2015,26(10):1844-1850.<br /> 陆诗阔,王迪,李玉坤,等.鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J].天然气地球科学,2015,26(10):1844-1850.<br /> [9]Riazi N,Clarkson C R,Ghanizadeh A,et al.Determination of elastic properties of tight rocks from ultrasonic measurements:Examples from the Montney Formation(Alberta,Canada)[J].Fuel,2017,196:442-457.<br /> [10]Liu Weiguo,Han Dengyu,Miao Wentao,et al.Discussion on the calculation of mechanical parameters of rock with geophysical well logging data in Baizuishan region,Toksun,Xinjiang[J].Uranium Geology,2013,29(5):310-314.<br /> 刘卫国,韩登宇,苗文韬,等.利用地球物理测井数据计算新疆托克逊县白嘴山地区岩石力学参数的方法探讨[J].铀矿地质,2013,29(5):310-314.<br /> [11]Ullemeyer K,Lokajíek T,Vasin R N,et al.Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli[J].Physics of the Earth and Planetary Interiors,2018,275:32-43.<br /> [12]Meng Zhaoping,Zhang Jichang,Joachim Tiedemann.Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J].Chinese Journal of Geophysics,2006,49(5):1505-1510.<br /> 孟召平,张吉昌,Joachim Tiedemann.煤系岩石物理力学参数与声波速度之间的关系[J].地球物理学报,2006,49(5):1505-1510.<br /> [13]Fan Tiegang,Zhang Guangqing,Ding Yunhong,et al.Research on effective elastic mechanical properties of medium rank coal[J].Rock and Soil Mechanics,2014,35(S2):204-209.<br /> 范铁刚,张广清,丁云宏,等.中阶煤有效弹性力学性质研究[J].岩土力学,2014,35(增刊2):204-209.<br /> [14]Duc-Phi Doa,Nam-Hung Tran,Dashnor Hoxha,et al.Assessment of the influence of hydraulic and mechanical anisotropy on the fracture initiation pressure in permeable rocks using a complex potential approach[J].International Journal of Rock Mechanics and Mining Sciences,2017,100:108-123.<br /> [15]Jin Z F,Li W X,Jin C R,et al.Anisotropic elastic,strength,and fracture properties of Marcellus shale[J].International Journal of Rock Mechanics and Mining Sciences,2018,109:124-137.<br /> [16]Ge Hongkui,Chen Yong,Lin Yingsong.The micro mechanism of the difference between dynamic and static elastic parameters of rock[J].Journal of the University of Petroleum,China:Edition of Natural Science,2001,25(4):34-36.<br /> 葛洪魁,陈颙,林英松.岩石动态与静态弹性参数差别的微观机理[J].中国石油大学学报:自然科学版,2001,25(4):34-36.<br /> [17]Chen Yong.Mechanical Properties of Crustal Rocks-Basic Theory and Experimental Methods[M].Beijing:Seismological Press,1988:144-149.<br /> 陈颙.地壳岩石的力学性能——基础理论与实验方法[M].北京:地震出版社,1988:144-149.<br /> [18]Chen Lichao,Wang Shengwei,He Junhua,et al.Study of the impact of coal fines source collection on hydraulic fracturing effect[J].Journal of China University of Mining & Technology,2015,44(3):526-531.<br /> 陈立超,王生维,何俊铧,等.煤粉源集合体对水力压裂效果的影响[J].中国矿业大学学报,2015,44(3):526-531.<br />
[1] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[2] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
[3] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[4] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[5] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[6] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[7] 林玉祥,舒永,赵承锦,李夏,张春荣. 沁水盆地含煤地层天然气统筹勘探方法及有利区预测[J]. 天然气地球科学, 2017, 28(5): 744-754.
[8] 陈跃,汤达祯,田霖,马东民,方世跃,陈茜. 煤变质程度对中低阶煤储层孔裂隙发育的控制作用[J]. 天然气地球科学, 2017, 28(4): 611-621.
[9] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[10] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356-365.
[11] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[12] 付海峰,刘云志,梁天成,翁定为,卢拥军,修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[13] 杜书恒,赵晔,庞姗,师永民. 岩石水力压裂微观破裂机制[J]. 天然气地球科学, 2016, 27(12): 2237-2245.
[14] 曹运兴,柴学周,刘同吉,冯培文,田林,石玢,曹永恒,周丹. 潞安矿区山西组3#煤储层低压特征及控制因素研究[J]. 天然气地球科学, 2016, 27(11): 2077-2085.
[15] 汪剑,崔永谦,史今雄,刘国平,肖阳,曾联波. 沁水盆地南部煤储层裂缝测井响应与参数重构[J]. 天然气地球科学, 2016, 27(11): 2086-2092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!