天然气地球科学

• 非常规天然气 • 上一篇    下一篇

富有机质页岩生烃阶段孔隙演化及分形特征

尹娜,薛莲花,姜呈馥,杨爽,高潮,陈国俊   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.中国科学院大学,北京100049;
    3.陕西延长石油(集团)有限责任公司,陕西 西安 710075
  • 收稿日期:2018-04-10 修回日期:2018-09-10 出版日期:2018-12-10
  • 通讯作者: 陈国俊(1967-),男,甘肃武威人,研究员,博士,主要从事油气储层地质学研究. E-mail:gjchen@lzb.ac.cn
  • 作者简介:尹娜(1992-),女,山东日照人,硕士研究生,主要从事石油地质学与储层沉积学研究.E-mail:18306422290@163.com.
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(编号:XDB10010300);国家自然科学基金“四川盆地下古生界海相页岩微孔隙特征及形成机制研究”(编号:41402130);陕西省科技统筹创新工程项目(编号:2012KTZB03-03-01)联合资助.

The porous evolution and fractal dimension of the organic-rich shale at the stage of hydrocarbon generation

Yin Na,Xue Lian-hua,Jiang Cheng-fu,Yang Shuang,Gao Chao,Chen Guo-jun   

  1. 1.Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources 
    Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,Lanzhou 730000,China; 
    2.University of Chinese Academy of Sciences,Beijing 100049,China; 
    3.Shaanxi Yanchang Petroleum (Group) Co.Ltd.,Xi’an 710075,China
  • Received:2018-04-10 Revised:2018-09-10 Online:2018-12-10

摘要: 为明确富有机质页岩孔隙演化规律,以鄂尔多斯盆地三叠系延长组不同成熟度(RO值介于0.53%~1.09%之间)黑色页岩为研究对象,通过扫描电镜、氮气吸附和X-射线衍射等技术手段对页岩储层的纳米孔隙及热演化特征进行研究,并依据FHH分形模型探讨了页岩孔隙分形特征及热演化规律。结果表明:页岩孔隙总体积和比表面积主要受控于中孔(2~50nm)和大孔(>50nm),并与TOC含量有较好的相关性;随着RO值的增加,页岩孔隙总体积先下降,再略微上升,比表面积先下降,再明显回升,这是压实作用和生排烃作用共同作用的结果。RO值与有机质孔发育程度密切相关,是中孔的最大贡献者。页岩孔隙的分形维数普遍较高,随着热演化程度的加深整体呈增大趋势,且与孔体积及平均孔径显著负相关,与比表面积正相关,表明页岩孔隙结构趋于复杂,吸附能力提升。

关键词: 页岩, 成熟度, 孔隙结构, 分形维数, 孔隙演化

Abstract: To study the micro pore shale thermal evolution,this paper takes Triassic black shale of different maturity (RO=0.53%-1.09%) in Ordos Basin as the research object,characterizingshale pore evolution by scanning electron microscopy,N2 adsorption method,X-ray,and exploring the fractal characteristics of shale based on the thermal evolution of the FHH fractal model.The results show that as the maturity of organic matter increases,the pores of organic matter increase,the average pore size decreases,the total pore volume,mainly controlled by the volume of the large pores and mesoporous pores,decreases first and then slightly increases; and the specific surface area first decreases and then increases,which is in accordance with the evolution trend of the mesoporous volume.The above phenomena may be closely related to compaction and hydrocarbon generation and expulsion byorganic matter.Furthermore,the pore size of organic matter is closely related to RO and is the largest contributor to mesopores.The fractal dimension (calculated by FHH model)which is negatively correlated with pore volume and average pore size,and positively related to specific surface areaincreases generally(between 2.513 and 2.745),indicating that shale pore structure tends to be complex,and the adsorption capacity is improved.

Key words: Shale, Pore volume, Specific surface area, Fractal dimension, Pore evolution

中图分类号: 

  • TE121.1+1
[1]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Micro pore structure characteristics of shale reservoir[J].Acta Petrolei Sinica,2013,34(2):301-311.
杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.
[2]Zou Caineng,Zhu Rukai,Wu Songtao,et al.The types,characteristics,mechanisms and prospects of conventional and unconventional oil and gas accumulation:An example of tight oil and dense gas in China[J].Acta Petrolei Sinica,2012,33(2):173-187.
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.
[3]Zhang Yanshan,Peng Zhi,Yang Wei,et al.Enlightenments of American shale oil research towards China[J].Lithologic Reservoir,2015,27(3):1-10.
张延山,彭志,杨巍,等.美国页岩油研究对我国的启示[J].岩性油气藏,2015,27(3):1-10.
[4]Zhang Jinchuan,Wang Zongyu,Nie Haikuan,et al.Shale gas and its significance for exploration and research[J].Geoscience,2008,22(4):640-645.
张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义[J].现代地质,2008,22(4):640-645.
[5]Joel D W,Steven W S.Eagle Ford shale reservoir properties from digital rock physics[J].First Break,2011,29:97-100.
[6]Sondergeld C H,Rai C S.Elastic anisotropy of shales[J].The Leading Edge,2011,30(3):324-331.
[7]Zou Caineng,Tao Shizhen,Hou Lianhua,et al,Unconventional Oil and Gas Geology[M].Beijing:Geological Publishing House,2014.
邹才能,陶士振,侯连华,等.非常规油气地质学[M].北京:地质出版社,2014.
[8]Li Ke,Wang Xingzhi,Zhang Xinyi,et al.Shale reservoir characteristics and influence factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J].Lithologic Reservoir,2016,28(5):52-58.
李可,王兴志,张馨艺,等.四川盆地东部下志留统龙马溪组页岩储层特征及影响因素[J].岩性油气藏,2016,28(5):52-58.
[9]Liu Hangyu,Tian Zhongyuan,Xu Zhenyong,et al.Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics[J].Lithologic Reservoir,2017,29(5):97-105.
刘航宇,田中元,徐振永.基于分形特征的碳酸盐储层孔隙结构定量评价[J].岩性油气藏,2017,29(5):97-105.
[10]Gong Xiaoping,Tang Hongming,Zhao Feng,et al.Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J].Lithologic Reservoir,2016,28(3):48-57.
龚小平,唐洪明,赵峰,等.四川盆地龙马溪组页岩储层孔隙结构的定量表征[j].岩性油气藏,2016,28(3):48-57.
[11]Pu Boling,Dong Dazhong,Niu Jiayu,et al.New progress in the study of shale gas reservoir[J].Geological Science and Technology Information,2014,33(2):98-104.
蒲泊伶,董大忠,牛嘉玉,等.页岩气储层研究新进展[J].地质科技情报,2014,33(2):98-104.
[12]Wei Wei,Wang Feiyu.Reservoir control factors and reservoir characteristics of shale oil and gas resources system[J].Geological Science and Technology Information,2014,33(1):150-156.
魏威,王飞宇.页岩油气资源体系成藏控制因素与储层特征[J].地质科技情报,2014,33(1):150-156.
[13]Chen J,Xiao X M.Evolution of nanoporosity in or-ganic-rich shales during thermal maturation[J].Fuel,2014,129:173-181.
[14]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26-31.
[15]Guo Qiulin,Wu Na,Ren Hongjia,et al.Prediction models of organic pores in shale with low to moderate maturity[J].Lithologic Reservoir,2017,29(4):1-7.
郭秋麟,武娜,任洪佳,等.中低成熟阶段页岩有机质孔预测模型探讨[J].岩性油气藏,2017,29(4):1-7.
[16]Wu Songtao,Zou Caineng,Zhu Rukai,et al.The reservoir performance of shale in the 7th member of the Yanchang Formation of Ordos Basin[J].Journal of Earth Science,2015,40(11):1810-1823.
吴松涛,邹才能,朱如凯,等.鄂尔多斯盆地上三叠统长 7 段泥页岩储集性能[J].地球科学,2015,40(11):1810-1823.
[17]Hu Haiyan.Thermal simulation experiment on pore evolution of rich Woodford shale[J].Acta Petrolei Sinica,2013,34(5):821-825.
胡海燕.富有机质Woodford页岩孔隙演化的热模拟实验[J].石油学报,2013,34(5):821-825.
[18]Sun L,Tuo J,Zhang M F,et al.Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J].Fuel,2015,158:549-557.
[19]Cui Jingwei,Zhu Rukai,Cui Jinggang,et al.The relationship between shale pore evolution and its residual hydrocarbon:evidence from simulation experiments under the constraints of geological processes[J].Acta Geologica Sinica,2013,87(5):730-736.
崔景伟,朱如凯,崔京钢,等.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J].地质学报,2013,87(5):730-736.
[20]Chen Yanyan,Zou Caineng,Maria Mastalerz,et al.Study on micropore evolution and fractal characteristics of shale[J].Natural Gas Geoscience,2015,26(9):1646-1655.
陈燕燕,邹才能,Maria Mastalerz,等.页岩微观孔隙演化及分形特征研究[J].天然气地球科学,2015,26(9):1646-1655.
[21]Zhang Chuanghui,Zhu Yanming,Liu Yu,et al.Shale porosity and its characteristics in different maturity[J].Fault-Block Oil and Gas Field,2016,23(5):583-588.
张闯辉,朱炎铭,刘宇,等.不同成熟度页岩孔隙及其分性特征[J].断块油气田,2016,23(5):583-588.
[22]Chen Shangbin,Qin Yong,Wang Yang,et al.Heterogeneity of pore structure of marine shale gas reservoir in Middle Upper Yangtze region[J].Natural Gas Geoscience,2015,26(8):1455-1463.
陈尚斌,秦勇,王阳,等.中上扬子区海相页岩气储层孔隙结构非均质性特征[J].天然气地球科学,2015,26(8):1455-1463.
[23]Zeng Jingke,Pan Renfang,Jin Xiao,et al.Heterogeneity analysis of shale reservoir:Take Lower Silurian Longmaxi Formation in the Sichuan Changning area as an example[J].Fault-Block Oil and Gas Field,2016,23(2):146-150.
曾靖珂,潘仁芳,金晓,等.页岩储层非均质性分析——以四川长宁地区下志留统龙马溪组为例[J].断块油气田,2016,23(2):146-150.
[24]Jiao  Kun.Genesis,Evolution Mechanism and Quantitative Characterization of Nanoscale Pores in Coal and Shale[R].Nanjing:Nanjing University,2015.
焦堃.煤和泥页岩纳米孔隙的成因、演化机制与定量表征[R].南京:南京大学,2015.
[25]Sing K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(recommendations 1984)[J].Pure & Applied Chemistry,2009,54(11):2201-2218.
[26]Yang Feng,Ning Zhengfu,Zhang Shidong,et al.Characterization of shale pore structure based on nitrogen adsorption experiments[J].New Energy,2013,33(4):135-140.
杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].新能源,2013,33(4):135-140.
[27]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Characteristics of pore structure of Longmaxi Group shale gas reservoir in southern Sichuan and its significance in reservoir formation[J].International Journal of Coal Science & Technology,2012,37(3):438-444.
陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
[28]Clarkson C R,Solano N,Bustin R M,et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J].Fuel,2013,103:606-616.
[29]Kuila U,Prasad M.Specic surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting,2013,61(2):341-362.
[30]Liu Shugen,Zeng Xianglang,Huang Wenming,et al.Basic characteristics of shale and continuous-discontinuous transition gas reservoirs in Sichuan Basin,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(6):578-592.
刘树根,曾祥亮,黄文明,等.四川盆地页岩气藏和连续型—非连续型气藏基本特征[J].成都理工大学学报:自然科学版,2009,36(6):578-592.
[31]Liang C,Jiang Z,Yang Y,et al.Shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation,Sichuan Basin,China[J].Petroleum Exploration and Development,2012,39(6):736-743.
[32]Schlueter E M,Zimmerman R W,Witherspoon P A,et al.The fractal dimension of pores in sedimentary rocks and its inuence on permeability[J].Engineering Geology,1997,48(3):199-215.
[33]Xu Yong,Lv Chengfu,Chen Guojun,et al.The pore fractal characteristics of shale of the Longmaxi Group in southeast Sichuan[J].Lithologic Reservoirs,2015,27(4):32-39.
徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征[J].岩性油气藏,2015,27(4):32-39.
[34]Yang F,Ning Z,Liu H,et al.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115:378-384.
[35]Sahouli B,Blacher S,Brouers F,et al.Fractal surface analysis by using nitrogen adsorption data:The case of the caplillary condensation regime[J].Langmuir,1996,12(11):2872-2874.
[36]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and adescriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[37]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79:848-861.
[38]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[39]Yang R,He S,Yi J,et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area,Sichuan Basin:investigations using FE-SEM,gas adsorption and helium pycnometry[J].Marine and Petroleum Geology,2016,70:27-45.
[40]Curtis M E,Cardott B J,Songdergeld C H,et al.Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26-31.
[41]Cui Jingwei,Zou Caineng,Zhu Rukai,et al.New progress in shale pore research[J].Advances in Earth Science,2012,27(12):1319-1325.
崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12):1319-1325.
[42]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for the rmogenic shale-gas assessment[J].AAPG Bulletin.2007,91(4):475-499.
[43]Slatt R M,O’Brien N.Pore types in the Barnett and Woodford gas shale:Contribution to understanding gas storage and migration path-ways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[44]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Research status and development trend of shale gas in China[J].Acta Petrolei Sinica,2010,31(4):689-694.
陈尚斌,朱炎铭,王红岩,等.中国页岩气研究现状与发展趋势[J].石油学报,2010,31(4):689-694.
[45]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Study on pore characteristics of rich organic shale by mercury injection and gas adsorption method[J].Acta Petrolei Sinica,2012,33(3):419-427.
田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.
[46]Shao X,Pang X,Li Q,et al.Pore structure and fractal characteristics of organic-rich shales:A case study of the lower Silurian Longmaxi shales in the Sichuan Basin,SW China[J].Marine and Petroleum Geology,2017,80:192-202.
[47]Zhang Jiankun,He Sheng,Yan Xinlin,et al.Nanoscale Pore structure characteristics and thermal maturity evolution of shale[J].Journal of China University of Petroleum:Edition of Natural Science,2017,41(1):11-24.
张建坤,何生,颜新林,等.页岩纳米级孔隙结构特征及热成熟演化[J].中国石油大学学报:自然科学版,2017,41(1):11-24.
[48]Li Xiangjun,Luo Jinglan,Luo Xiaorong,et al.Pore characteristics and evolution of the shale in the 7th member of the Yanchang Formation of Ordos Basin[J].Geological Science and Technology Information,2017,36(4):19-27.
李向军,罗静兰,罗晓容,等.鄂尔多斯盆地长7段泥页岩系孔隙特征及其演化规律[J].地质科技情报,2017,36(4):19-27.
[49]Wu Jianguo,Liu Dameng,Yao Yanbin,et al.The development characteristics and controlling factors of nano pore in the Weibei area of the Ordos Basin[J].Oil & Gas Geology,2014,35(4):542-550.
吴建国,刘大锰,姚艳斌,等.鄂尔多斯盆地渭北地区页岩纳米孔隙发育特征及其控制因素[J].石油与天然气地质,2014,35(4):542-550.
[50]Liu Wenping,Zhang Chenglin,Gao Guidong,et al.Control factors and evolution rules of shale porosity in Sichuan Basin Longmaxi Formation[J].Acta petrolei Sinica,2017,38(2):175-184.
刘文平,张成林,高贵冬,等.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报,2017,38(2):175-184.
[51]Yao Y,Liu D,Tang D,et al.Fractal characterization of seep-age-pores of coals from China:An investigation on permeability of coals[J].Computers & Geosciences,2009,35(6):1159-1166.
[52]Fu Changqing,Zhu Yanming,Chen Shangbin,et al.The pore structure and fractal characteristics of shale of Zhexihetang Formation[J].China University of Mining and Technology,2016,45(1):1-10.
付常青,朱炎铭,陈尚斌,等.浙西荷塘组页岩孔隙结构及分形特征研究[J].中国矿业大学学报,2016,45(1):1-10.
[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[5] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[6] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[7] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[8] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[9] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[10] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[11] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[12] 钟 佳,尤丽,张迎朝,曲希玉,代龙,吴仕玖. 琼东南盆地乐东—陵水凹陷黄流组峡谷水道储层成岩作用与孔隙演化[J]. 天然气地球科学, 2018, 29(5): 708-718.
[13] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[14] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[15] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 王东旭;曾溅辉;宫秀梅;. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16(3): 329 -333 .
[3] 戴金星, 邹才能, 陶士振, 刘全有, 周庆华, 胡安平, 杨 春.
中国大气田形成条件和主控因素
[J]. 天然气地球科学, 2007, 18(4): 473 -484 .
[4] 刘兴旺,郑建京,杨鑫,孙国强,苏龙,王亚东. 中、新生代阿尔金走滑断裂系构造运动的沉积学揭示[J]. 天然气地球科学, 2012, 23(1): 119 -128 .
[5] 陈建阳, 李国永, 于兴河, 王辉. 大庆长垣杏5X区块葡一组高分辨率层序叠加样式与沉积格局[J]. 天然气地球科学, 2012, 23(2): 244 -250 .
[6] 《天然气地球科学》2012年第2期 目录. 《天然气地球科学》2012年第2期   目录[J]. 天然气地球科学, 2012, 23(2): 1 .
[7] 李浩武,童晓光. 波斯湾盆地Khuff组成藏组合地质特征[J]. 天然气地球科学, 2012, 23(4): 727 -735 .
[8] 李武广,杨胜来,徐晶,董谦. 考虑地层温度和压力的页岩吸附气含量计算新模型[J]. 天然气地球科学, 2012, 23(4): 791 -796 .
[9] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2、3): 1 -40 .
[10] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .