天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于机器学习方法的天然气水合物稳定带厚度计算

杨森,吴时国,王吉亮,秦永鹏   

  1. 1.中国科学院深海科学与工程研究所海底资源与探测重点实验室,海南 三亚 572000; 2.中国科学院大学,北京 100049
  • 收稿日期:2018-06-21 修回日期:2018-08-23 出版日期:2018-11-10
  • 作者简介:杨森(1993-),男,河南驻马店人,硕士研究生,主要从事机器学习与地球物理研究.E-mail:1003761102@qq.com.
  • 基金资助:
    国家重点基础研究发展计划(编号:2015CB251201);国家自然科学基金(编号:41606072);中国科学院深海科学与工程研究所海南省海底资源与探测技术重点实验室开放基金联合资助.

Thickness of gas hydrate stability zone calculated by machine learning method

Yang Sen,Wu Shi-guo,Wang Ji-liang,Qin Yong-peng   

  1. 1.Institute of DeepSea Scienceand Engineering,ChineseAcademy of Sciences,Sanya 572000,China;2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2018-06-21 Revised:2018-08-23 Online:2018-11-10

摘要: 随着互联网大数据发展,人工智能算法逐渐能自动学习数据特征和挖掘大数据隐藏的信息,且其预测结果具有极高的准确度和可靠性。机器学习是人工智能的核心算法,目前已应用于多个领域,在地球科学领域的应用也已兴起。天然气水合物稳定带是评估水合物资源潜力的关键参数,其准确性直接影响水合物勘探进程和结果。前人在计算水合物稳定带厚度时往往采用较为简单的模型,忽略气体组分、热导率等因素的影响,计算结果存在较大偏差。基于不同海水盐度和气体组分条件下的天然气水合物实验数据构建机器学习模型,利用机器学习算法预测天然气水合物的相平衡条件;进而结合南海北部的气体组分、热流、热导率等数据,计算得到南海北部水合物稳定带厚度。结果分析表明机器学习模型预测的水合物相平衡曲线与实验数据高度吻合,决定系数高达0.997。计算的南海北部水合物稳定带厚度与水合物钻井和地震资料揭示的结果基本一致。 本研究提供了一个机器学习算法在水合物稳定带厚度估算中的应用实例,表明人工智能算法在未来天然气水合物资源预测和潜力评价中具有较大的应用前景。

关键词: 机器学习, 天然气水合物, 稳定带, 支持向量机

Abstract: With the development of big data processing techniques,artificial intelligence algorithm is emerging to automatically dig out the features and hidden information from large datasets,which performs with high accuracy and reliability.Machine learning is one of the core algorithms of artificial intelligence,which has been applied to a variety of fields,including geoscience research.The thickness of gas hydrate stability zone is one of the key parameters to assess the resource potential of gas hydrate,and its accuracy directly affects the process and result of gas hydrate exploration.Previous studies to calculate the thickness of gas hydrate stability zone,usually utilize simple gas hydrate phase equations,which ignore many effects,such as gas component,thermal conductivity,etc.,so that the results contain large bias.This paper predicted the phase condition of gas hydrate using machine learning,based on the experimental hydrate formation data of different gas components and seawater salinities.Then combining with heat flow,water depth and thermal conductivity of northern South China Sea,the thickness of gas hydrate stability zone was obtained by machine learning model.The predicted result is highly consistent with the experimental data and the coefficient of determination is up to 0.997.The computed thickness of gas hydrate stability agrees well with drilling data and seismic profiles.This paper provides an applied example for machine learning to calculate the thickness of gas hydrate in the northern South China Sea,which indicates that artificial intelligence has great application prospect in the potential evaluation of gas hydrate resource in the feature.

Key words: Machine learning, Gas hydrate, Gas hydrate stability zone, Support vector machine

中图分类号: 

  • TE132.2
[1]Haykin S.Neural Networks:A Comprehensive Foundation[M].Upper Saddle River,New Jersey,USA:Prentice Hall PTR,1994:71-80.
[2]Burges C C J.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
[3]Murthy S K.Automatic construction of decision trees from data:A multi-disciplinary survey[J].Data Mining and Knowledge Discovery,1998,2(4):345-389.
[4]Dutton D M,Conroy G V.A review of machine learning[J].Knowledge Engineering Review,1997,19(12):341-367.
[5]Brijs T,Swinnen G,Vanhoof K,et al.Using Association Rules for Product Assortment Decisions:A Case Study[C].ACM New York,NY,USA:KDD '99 Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1999:254-260.
[6]Hassan A H,Lambert-Lacroix S,Pasqualini F.Real-time fault detection in semiconductor using one-class support vector machines[J].International Journal of Computer Theory and Engineering,2015,7(3):191-196.
[7]Androutsopoulos I,Paliouras G,Karkaletsis V,et al.Learning to filter spam e-Mail:A comparison of a naive bayesian and a memory-based approach[J].Computer Science,2000,97(2):1-13.
[8]Guzella T S,Caminhas W M.A review of machine learning approaches to spam filtering[J].Expert Systems with Applications,2009,36(7):10206-10222.
[9]Bobadilla J,Ortega F,Hernando A.Recommender systems survey[J].Knowledge-Based Systems,2013,46(1):109-132.
[10]Huang C L,Chen M C,Wang C J.Credit scoring with a data mining approach based on support vector machines[J].Expert Systems with Applications,2007,33(4):847-856.
[11]Ravisankar P,Ravi V,Raghava Rao G,et al.Detection of financial statement fraud and feature selection using data mining techniques[J].Decision Support Systems,2011,50(2):491-500.
[12]Huang W,Nakamori Y,Wang S Y.Forecasting stock market movement direction with support vector machine[J].Computers & Operations Research,2005,32(10):2513-2522.
[13]Lim J S.Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea[J].Journal of Petroleum Science & Engineering,2005,49(3/4):182-192.
[14]Helmy T,Fatai A,Faisal K.Hybrid computational models for the characterization of oil and gas reservoirs[J].Expert Systems with Applications,2010,37(7):5353-5363.
[15]Zhang C,Frogner C,Arayapolo M,et al.Machine-learning Based Automated Fault Detection in Seismic Traces[C].Netherlands:EAGE Conference and Exhibition,2014.
[16]Chapoy A,Mohammadi A H,Richon D.Predicting the hydrate stability zones of natural gases using artificial neural networks[J].Oil & Gas Science and Technology-Rev.IFP,2007,62(5):701-706.
[17]Yang J,Tohidi B.Determination of hydrate inhibitor concentrations by measuring electrical conductivity and acoustic velocity[J].Energy & Fuels,2013,27(2):736-742.
[18]Kvenvolden K A.Gas hydrates-geological perspective and global change[J].Reviews of Geophysics,1993,31(2):173-187.
[19]Paull C K,Dillon W P.Natural gas hydrates:Occurrence,distribution,and detection[J].American Geophysical Union Geophysical Monograph Series,2001,124:145-161.
[20]Sloan E D.Clathrate Hydrates of Natural Gases[M].3rd Edition.Boca Raton:CRC Press,2007.
[21]Yu X H,Wang J Z,Liang J Q,et al.Depositional characteristics and accumulation model of gas hydrates in northern South China Sea[J].Marine and Petroleum Geology,2014,56:74-86.
[22]Wu N Y,Yang S X,Wang H B,et al.Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area,northern South China Sea[J].Chinese Journal of Geophysics-Chinese Edition,2009,52(6):1641-1650.
[23]Yang S X,Zhang M,Liang J Q,et al.Preliminary results of China’s third gas hydrate drilling expedition:A critical step from discovery to development in the South China Sea[J].Fire in the Ice,2015,15(2):1-5.
[24]Zhang G X,Yang S X,Zhang M,et al.GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea[J].Fire in the Ice,2014,14(1):1-5.
[25]Jin C S,Wang J Y.A preliminary study of the gas hydrate,stability zone in the South China Sea[J].Acta Geologica Sinica-English Edition,2002,76(4):423-428.
[26]Wang Y M,Liu S W,Hao F F,et al.Geothermal investigation of the thickness of gas hydrate stability zone in the north continental margin of the South China Sea[J].Acta Oceanologica Sinica,2017,36(4):72-79.
[27]Chen Duofu,Li Xuxuan,Xia Bin.Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J].Chinese Journal of Geophysics,2004,47(3):483-489.
陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报,2004,47(3):483-489.
[28]Fang Yinxia,Li Mingbi,Jin Xianglong,et al.Character analysis of the marine gas hydrate stability zone[J].Marine Geology & Quaternary Geology,2001,21(1):103-106.
方银霞,黎明碧,金翔龙,等.海底天然气水合物稳定带的特征分析[J].海洋地质与第四纪地质,2001,21(1):103-106.
[29]He L J,Wang J Y,Xu X,et al.Disparity between measured and BSR heat flow in the Xisha Trough of the South China Sea and its implications for the methane hydrate[J].Journal of Asian Earth Sciences,2009,34(6):771-780.
[30]He Yong,Su Zheng,Wu Nengyou.Factors influencing the thickness of gas hydrate stability zone in marine sediments[J].Marine Geology Frontiers,2012,28(5):43-47.
何勇,苏正,吴能友.海底天然气水合物稳定带厚度的影响因素[J].海洋地质前沿,2012,28(5):43-47.
[31]Jin Chunshuang,Wang Jiyang,Zhang Guangxue.Factors affecting natural gas hydrate stability zone in the South China Sea[J].Mineral Deposits,2005,24(4):388-397.
金春爽,汪集旸,张光学.南海天然气水合物稳定带的影响因素[J].矿床地质,2005,24(4):388-397.
[32]Jin Chunshuang,Wang Jiyang,Lu Zhenquan.A tentative discussion on the evolution of the natural gas hydrates stable zone in Xisha Trough of South China Sea since 6 Ma B.P.[J].Mineral Deposits,2011,30(1):156-162.
金春爽,汪集旸,卢振权.南海西沙海槽6Ma以来天然气水合物稳定带演化初探[J].矿床地质,2011,30(1):156-162.
[33]Wang Shuhong,Song Haibin,Yan Wen,et al.Stable zone thickness and resource estimation of gas hydrate in southern South China Sea[J].Natural Gas Industry,2005,25(8):24-27.
王淑红,宋海斌,颜文,等.南海南部天然气水合物稳定带厚度及资源量估算[J].天然气工业,2005,25(8):24-27.
[34]Wang Shuhong,Song Haibin,Yan Wen.The change of external conditions effects on the phase equilibrium curve of gas hydrate and the thickness of hydrate stability zone[J].Progress in Geophysics,2005,20(3):761-768.
王淑红,宋海斌,颜文.外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响[J].地球物理学进展,2005,20(3):761-768.
[35]Miles P R.Potential distribution of methane hydrate beneath the European continental margins[J].Geophysical Research Letters,1995,22(23):3179-3182.
[36]Milkov A V,Sassen R.Thickness of the gas hydrate stability zone,Gulf of Mexico continental slope[J].Marine and Petroleum Geology,2000,17(9):981-991.
[37]Sain K,Rajesh V,Satyavani N,et al.Gas-hydrate stability thickness map along the Indian continental margin[J].Marine and Petroleum Geology,2011,28(10):1779-1786.
[38]Root M J,Elwood Madden M E.Potential effects of obliquity change on gas hydrate stability zones on Mars[J].Icarus,2012,218(1):534-544.
[39]Xu Wei,Qiu Nansheng,Sun Changyu,et al.The distribution characterisitics of the the thickness of gas hydrate stability zone in South China Sea[J].Geoscience,2010,24(3):467-473.
许威,邱楠生,孙长宇,等.南海天然气水合物稳定带厚度分布特征[J].现代地质,2010,24(3):467-473.
[40]Ge Qian,Wang Jiasheng,Xiang Hua,et al.Computation of thickness of gas hydrate stability zone and potential volume of gas hydrate in South China Sea[J].Earth Science:Journal of China University of Geosciences,2006,31(2):245-249.
葛倩,王家生,向华,等.南海天然气水合物稳定带厚度及资源量估算[J].地球科学:中国地质大学学报,2006,31(2):245-249.
[41]Rao Y H.C-program for the calculation of gas hydrate stability zone thickness[J].Computers & Geosciences,1999,25(6):705-707.
[42]Chen Duofu,Yao Bochu,Zhao Zhenhua,et al.Geochemical constraints and potential distributions of gas hydrates in Pearl River Mouth Basin and Qiongdongnan Basin in the northern margin of the South China Sea[J].Marine Geology & Quaternary Geology,2001,21(4):73-78.
陈多福,姚伯初,赵振华,等.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质,2001,21(4):73-78.
[43]Wu Nengyou,Zhang Guangxue,Liang Jinqiang,et al.Progress of gas hydrate research in northern South China Sea[J].Advances in New and Renewable Energy,2013,1(1):80-94.
吴能友,张光学,梁金强,等.南海北部陆坡天然气水合物研究进展(英文)[J].新能源进展,2013,1(1):80-94.
[44]Ru K,Pigott J D.Episodic rifting and subsidence in the South China sea[J].AAPG Bulletin,1986,70(9):1136-1155.
[45]Chen Moxiang,Xia Sigao,Yang Shuzhen.Local geothermal anomalles and their formattion mechanisms on Leizhou Peninsula,South China[J].Scientia Geologica Sinica,1991(4):369-383.
陈墨香,夏斯高,杨淑贞.雷州半岛局部地热异常及其形成机制[J].地质科学,1991(4):369-383.
[46]Rao Chuntao,Li Pinglu.Study of heat flow in Pearl River Mouth Basin[J].China Offshore Oil & Gas:Geology,1991,5(6):7-18.
饶春涛,李平鲁.珠江口盆地热流研究[J].中国海上油气:地质,1991,5(6):7-18.
[47]He L J,Xiong L P,Wang J Y.Heat flow and thermal modeling of the Yinggehai Basin,South China Sea[J].Tectonophysics,2002,351(3):245-253.
[48]Xu Xing,Shi Xiaobin,Luo Xianhu,et al.Data processing methods of marine geothermal measurement on the northern margin of the South China Sea[J].Geoscience,2006,20(3):457-464.
徐行,施小斌,罗贤虎,等.南海北部海底地热测量的数据处理方法[J].现代地质,2006,20(3):457-464.
[49]Xu Xing,Shi Xiaobin,Luo Xianhu,et al.Heat flow measurements in the Xisha Trough of the South China Sea[J].Marine Geology & Quaternary Geology,2006,26(4):51-58.
徐行,施小斌,罗贤虎,等.南海西沙海槽地区的海底热流测量[J].海洋地质与第四纪地质,2006,26(4):51-58.
[50]Yuan Y S,Zhu W L,Mi L J,et al.“Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea[J].Marine and Petroleum Geology,2009,26(7):1152-1162.
[51]Mi Lijun,Yuan Yusong,Zhang Gongcheng,et al.Characteristics and genesis of geothermal field in deep water area of the northern South China Sea[J].Acta Petrolei Sinica,2009,30(1):27-32.
米立军,袁玉松,张功成,等.南海北部深水区地热特征及其成因[J].石油学报,2009,30(1):27-32.
[52]Li Yamin,Luo Xianhu,Xu Xing,et al.Seafloor in-situ heat flow measurements in the deep-water area of the northern slope,South China Sea[J].Chinese Journal of Geophysics,2010,53(9):2161-2170.
李亚敏,罗贤虎,徐行,等.南海北部陆坡深水区的海底原位热流测量[J].地球物理学报,2010,53(9):2161-2170.
[53]Xu Xing,Li Yamin,Luo Xianhu,et al.Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea[J].Chinese Journal of Geophysics,2012,55(3):998-1006.
徐行,李亚敏,罗贤虎,等.南海北部陆坡水合物勘探区典型站位不同类型热流对比[J].地球物理学报,2012,55(3):998-1006.
[54]Wang Z F,Shi X B,Yang J,et al.Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin[J].Acta Oceanologica Sinica,2014,33(12):107-117.
[55]Shi Xiaobin,Wang Zhenfeng,Jiang Haiyan,et al.Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin[J].Chinese Journal of Geophysics,2015,58(3):939-952.
施小斌,王振峰,蒋海燕,等.张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J].地球物理学报,2015,58(3):939-952.
[56]Tang Xiaoyin,Hu Shengbiao,Zhang Gongcheng,et al.Geothermal characteristics and hydrocarbon accumulation of the northern marginal basins,South China Sea[J].Chinese Journal of Geophysics,2014,57(2):572-585.
唐晓音,胡圣标,张功成,等.南海北部大陆边缘盆地地热特征与油气富集[J].地球物理学报,2014,57(2):572-585.
[57]Wilcox W I,Carson D B,Katz D L.Natural Gas Hydrates[J].Industrial & Engineering Chemistry,1941,43(12):662-665.
[58]Noaker L J,Katz D L.Gas hydrate of hydrogen sulfide-methane mixtures[J].Journal of Petroleum Technology,1954,6(9):135-137.
[59]Mcleod H O.Natural gas hydrates at pressures to 10,000 psia[J].Journal of Petroleum Technology,1961,13(6):590-594.
[60]Robinson D B,Hutton J B.Hydrate formation in systems containing methane,hydrogen sulphide and carbon dioxide[J].Journal of Canadian Petroleum Technology,1967,6(1):6-9.
[61]Adisasmito S,Iii R J F,Jr E D S.Hydrates of carbon dioxide and methane mixtures[J].Journal of Chemical & Engineering Data,1991,36(1):68-71.
[62]Kamari E,Oyarhossein M.Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample[J].Journal of Natural Gas Science and Engineering,2012,9:11-15.
[63]Cha M,Hu Y,Sum A K.Methane hydrate phase equilibria for systems containing NaCl,KCl,and NH4Cl[J].Fluid Phase Equilibria,2016,413:2-9.
[64]Hu Y,Lee B R,Sum A K.Phase equilibrium data of methane hydrates in mixed brine solutions[J].Journal of Natural Gas Science and Engineering,2017,46:750-755.
[65]Liu C L,Meng Q G,He X L,et al.Characterization of natural gas hydrate recovered from Pearl River Mouth Basin in South China Sea[J].Marine and Petroleum Geology,2015,61:14-21.
[66]Liang Jinqiang,Fu Shaoying,Chen Fang,et al.Charateristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea[J].Natural Gas Geoscience,2017,28(5):761-770.
梁金强,付少英,陈芳,等.南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J].天然气地球科学,2017,28(5):761-770.
[67]Fu Shaoying,Lu Jing'an.The characteristics and origin of gas hydrate in Shenhu area,South China Sea[J].Marine Geology Letters,2010,26(9):6-10.
付少英,陆敬安.神狐海域天然气水合物的特征及其气源[J].海洋地质动态,2010,26(9):6-10.
[68]Wang H,Hu D.Comparison of SVM and LS-SVM for Regression[C].Beijing:International Conference on Neural Networks and Brain,2005:279-283.
[69]Wang S H,Yan W,Song H B.Mapping the thickness of the gas hydrate stability zone in the South China Sea[J].Terrestrial Atmospheric and Oceanic Sciences,2006,17(4):815-828.
[70]Kaul N,Rosenberger A,Villinger H.Comparison of measured and BSR-derived heat flow values,Makran accretionary prism,Pakistan[J].Marine Geology,2000,164(1):37-51.
[71]Wang Shuhong,Song Haibin,Yan Wen.Discussion of the calculation methods and selection of parameters of the gas hydrate stability zone[J].Geoscience,2005,19(1):101-107.
王淑红,宋海斌,颜文.天然气水合物稳定带的计算方法与参数选择探讨[J].现代地质,2005,19(1):101-107.
[72]Trung N N.The gas hydrate potential in the South China Sea[J].Journal of Petroleum Science and Engineering,2012,(88/89):41-47.
[73]Lin A T,Liu C,Lin C,et al.Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin:An example from Taiwan[J].Marine Geology,2008,255(3/4):186-203.
[74]Yang S,Zhang H,Wu N,et al.High concentration hydrate in disseminated forms obtained in Shenhu Area,North Slope of South China Sea[C].Vancouver,British Columbia,Canada:Proceedings of the 6th International Conference on Gas Hydrates,2008.
[75]Zhang G X,Liang J Q,Lu J A,et al.Geological features,controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin,South China Sea[J].Marine and Petroleum Geology,2015,67:356-367.

[1] 张成龙, 陶士振, 白斌, 王倩茹. 基于支持向量机模型的烃源岩有机碳含量预测——以鄂尔多斯盆地为例[J]. 天然气地球科学, 2019, 30(5): 761-768.
[2] 范东稳, 卢振权, 刘晖, 肖睿, 王伟超, 李永红, 唐世琪. 南祁连盆地哈拉湖坳陷天然气水合物科学钻孔岩心顶空气组成及其地质意义[J]. 天然气地球科学, 2019, 30(4): 526-538.
[3] 刘杰, 杨睿, 邬黛黛, 金光荣. 基于生烃思路的微生物成因水合物资源量估算——以琼东南盆地西南深水区为例[J]. 天然气地球科学, 2019, 30(4): 539-548.
[4] 陈玉凤, 周雪冰, 梁德青, 吴能友. 沉积物中天然气水合物生成与分解过程的电阻率变化[J]. 天然气地球科学, 2018, 29(11): 1672-1678.
[5] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[6] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[7] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[8] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[9] 肖红平, 吴青柏, 林畅松, 魏伟, 张金华, 彭涌, 张鹏, 张巧珍. 天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例[J]. 天然气地球科学, 2016, 27(10): 1913-1923.
[10] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
[11] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
[12] 张伟,何家雄,卢振权,苏丕波,李晓唐,刘志杰. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11): 2185-2197.
[13] 刘杰,刘江平,程飞,杨文海. 基于岩石物理方法分析青藏高原天然气水合物填充模式[J]. 天然气地球科学, 2015, 26(11): 2198-2207.
[14] 苏丕波,乔少华,付少英,梁金强,苏明,杨睿,吴能友. 南海北部琼东南盆地天然气水合物成藏数值模拟[J]. 天然气地球科学, 2014, 25(7): 1111-1119.
[15] 郑明明, 蒋国盛,宁伏龙,刘力,张凌,李实,张可,Chikhotkin V.F.. 模拟冻土区水合物地层骨架的人造岩心实验研究[J]. 天然气地球科学, 2014, 25(7): 1120-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 李连民,陈世加,王绪龙,胡守志 . 准噶尔盆地陆梁油气田白垩系天然气的成因及其地质意义[J]. 天然气地球科学, 2004, 15(1): 75 -78 .
[3] 张水昌,赵文智,王飞宇,陈建平,肖中尧,钟宁宁,宋孚庆. 塔里木盆地东部地区古生界原油裂解气成藏历史分析――以英南2气藏为例[J]. 天然气地球科学, 2004, 15(5): 441 -451 .
[4] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[5] . 缘何说21世纪是天然气时代[J]. 天然气地球科学, 2000, 11(2): 24 .
[6] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271 -274 .
[7] 任以发;. 黄桥二氧化碳气田成藏特征与进一步勘探方向[J]. 天然气地球科学, 2005, 16(5): 632 -636 .
[8] 李小彦, 解光新. 煤储层吸附时间特征及影响因素[J]. 天然气地球科学, 2003, 14(6): 502 -505 .
[9] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[10] 程付启;金强;. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522 -525 .