天然气地球科学

• 天然气地质学 • 上一篇    下一篇

强变形区走滑断裂带伸展—聚敛应力效应构造解析及控气作用

尹帅,李爱荣,陈梦娜,赵金利,丁文龙,赵靖舟,曹翔宇   

  1. 1.西安石油大学地球科学与工程学院,陕西 西安 710065; 2.中国石油山西煤层气勘探开发分公司,山西 晋城 048000; 3.中国地质大学能源学院,北京 100083
  • 收稿日期:2017-07-09 修回日期:2018-04-17 出版日期:2018-11-10
  • 通讯作者: 李爱荣(1976-),女,河北沧州人,副教授,博士,主要从事油藏描述、油气田地质与开发研究及教学工作. E-mail:lar9503@163.com
  • 作者简介:尹帅(1989-),男,山东新泰人,讲师,博士,主要从事石油地质研究.E-mail:speedysys@163.com.
  • 基金资助:
    国家自然科学基金面上项目(编号:41772140);国家“十三五”科技重大专项(编号:2017ZX05035001-007)联合资助.

Stretch-convergence stress effect tectonic analysis and gas controlling of strike-slip fault zone in strong deformed zone

Yin Shuai,Li Ai-rong,Chen Meng-na,Zhao Jin-li,Ding Wen-long,Zhao Jing-zhou,Cao Xiang-yu   

  1. 1.School of Earth Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China; 2.China Petroleum Shanxi Coalbed Methane Exploration and Development Branch, Jincheng 048000, China; 3.School of Energy Resources, China University of Geosciences, Beijing 100083, China
  • Received:2017-07-09 Revised:2018-04-17 Online:2018-11-10

摘要: 沁水盆地处于华北板块内部,是一个中、新生代构造活动活跃的残留型盆地。盆地内部地层普遍发生了强烈变形,发育大量走滑断裂。走滑断裂的排列组合能指示局部地层应力环境并影响储层物性。以沁水盆地南部地区为解剖区,详细分析了强变形区走滑断裂带的伸展—聚敛应力效应及其对致密储层产能的影响。研究结果表明,研究区自喜马拉雅期以来,主要受来自于北东向的挤压应力的影响,断裂具有右行走滑的性质。在这种应力场作用下,右行右阶断裂指示伸展区,而右行左阶断裂指示聚敛区。基于该原理对伸展区和聚敛区进行了划分,从这2类区域的平面分布特征来看,从西北方向到东南方向,两者具有一定交互分布的特征。对于研究区东部的樊庄区块,自北向南,断裂走向呈“S型”的分布变化趋势;其中部伸展区为“S型”区域的肘部或转折端,或称“应力转折带”。应力转折带的构造应力场复杂,裂缝通常较为发育,为伸展区。具有较高产能的气井主要分布在伸展区,而聚敛区气井的产能则通常较低。气井产能分布情况与伸展—聚敛应力效应分析结果一致,验证了该构造解析方法的可靠性。

关键词: 走滑断裂带, 伸展区, 聚敛区, 致密储层, 产能

Abstract: The Qinshui Basin is located inside the North China Plate and is an active residual basin in the Mesozoic and Cenozoic tectonic activity.The strata in the basin have been strongly deformed and developed a lot of strike-slip faults.The combination of strike-slip faults can indicate the stress of the local formation and affect the petrophysical properties of the reservoir.In this paper, the extensional-convergence stress effect of the strike-slip fault zone in the strong deformed zone and its effect on the capacity of the tight reservoir are analyzed in detail in the southern Qinshui Basin.The results show that the study area has been influenced by the compressive stress from the north east since the Himalayan Period, and the fault has the property of dextral strike slip.Under the action of this stress field, the right-hand right-order fault indicates the extension region, and the right-hand left-order fault indicates the convergence region.Based on this principle, the extension area and the convergence area are divided.From the northwest direction to the southeast direction, the two regions have interactive distribution characteristics.For the Fanzhuang block in the eastern part of the study area, the distribution of the faults have a “S-type” trend from north to south, and the middle extension region is the elbow or the turning end of the “S-type” area, or called the “Stress transition zone”.The tectonic stress field of the stress transition zone is complex and the fracture is usually developed.Gas wells with higher capacity are mainly distributed in the extension zone, while the capacity of the gas wells in the converging area is usually low.The results show that the reliability of the tectonic analysis method is consistent with that of the extensional-aggregation stress effect analysis.

Key words: Strike-slip fault zone, Extension area, Convergence area, Tight reservoir, Capacity

中图分类号: 

  • TE121.1+1

[1]Tang Y J,Zhang H F,Ying J F.Asthenosphere-lithospheric mantle interaction in an extensional regime:Implication from the geochemistry of Cenozoic basalts from Taihang mountains,North China craton[J].Chemical  Geology,2006,233(3):309-327. 

[2]Chen L.Lithospheric structure variations between the eastern and central North China craton from S and P receiver function migration[J].Physics of the Earth and Planetary Interiors,2009,173(3):216-227. 

[3]Li S Z,Zhao G C,Dai L M,et al.Mesozoic basins in eastern China and their bearing on the deconstruction of the North China craton[J].Journal of Asian Earth Science,2012,47(1):64-79. 

[4]Morley C K.Discussion of tectonic models for Cenozoic strike-slip fault-affected continental margins of mainland SE Asia[J].Journal of Asian Earth Sciences,2013,76(2):137-151. [5]Nickelsen R P.Overprinted strike-slip deformation in the southern Valley and Ridge in Pennsylvania[J].Journal of Structural Geology,2009,31(4):865-873. 

[6]Nenna F,Aydin  A.The role of pressure solution seam and joint assemblages in the formation of strike-slip and thrust faults in a compressive tectonic setting;The Variscan of south-western Ireland[J].Journal of Structural Geology,2011,33(5):1595-1610.

 [7]Cao Xianzhi,Li Sanzhong,Liu Xin,et al.The intraplate morphotectonic inversion along the Eastern Taihang mountain fault zone,North China and its mechanism[J].Earth Science Frontiers,2013,20(4):88-101.    

曹现志,李三忠,刘鑫,等.太行山东麓断裂带板内构造地貌反转与机制[J].地学前缘,2013,20(4):88-101. 

[8]Cundall P A,Hart R D.Development of Generalized 2-D and 3-D Distinct Element Programs for Modeling Jointed Rock[R].Miscellaneous Paper SL-85-1.Itasca Consulting Group,US Army Corps of Engineers,1985. 

[9]Ding Wenlong,Zhang Shulin,Hu Wangshui,et al.Petroleum Tectonic Analysis[M].Beijing:Petroleum Industry Press,2012. 丁文龙,张树林,胡望水,等.石油构造分析[M].北京:石油工业出版社,2012.

 [10]Dai Jinxing,Ni Yunyan,Huang Shipeng,et al.Significant function of coal-derived gas study for natural gas industry development in China[J].NaturalGas Geoscience,2014,25(1):1-16.    戴金星,倪云燕,黄士鹏,等.煤成气研究对中国天然气工业发展的重要意义[J].天然气地球科学,2014,25(1):1-16. 

[11]“China’s Coal Bed Methane Exploration and Development Technology Research” Editorial Board.“China’s Coal Bed Methane Exploration and Development Technology Research”[M].Beijing:Petroleum Industry Press,2007. 中国煤层气勘探开发技术研究编辑委员会.中国煤层气勘探开发技术研究[M].北京:石油工业出版社,2007. 

[12]Pei Y W,Paton D A,Knipe R J,et al.A review of fault sealing behavior and its evaluation in siliciclastic rocks[J].Earth Science Reviews,2015,150:121-138.

[1] 姜瑞忠, 张福蕾, 郜益华, 崔永正, 沈泽阳, 原建伟. 三重介质压裂气藏椭圆流非稳态产能模型[J]. 天然气地球科学, 2019, 30(3): 370-378.
[2] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
[3] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[4] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[5] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[6] 郭睿良,陈小东,马晓峰,马静,[王琪],陈霖. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
[7] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[8] 李树同, 姚宜同, 乔华伟, 惠潇, 程党性, 张文选, 牟炜卫. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用及其对储层孔隙的定量影响[J]. 天然气地球科学, 2018, 29(12): 1727-1738.
[9] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[10] 赵军, 曹刚, 武延亮. 多元隶属函数在致密砂岩储层分类中的应用[J]. 天然气地球科学, 2018, 29(11): 1553-1558.
[11] 印森林, 程乐利, 刘子雄, 陈玲, 陈恭洋, 冯伟, 罗迎春. 基于测录井曲线的致密砂岩储层产能评价方法[J]. 天然气地球科学, 2018, 29(11): 1627-1638.
[12] 李跃林,赵晓波,王雯娟,白坤森,熊钰. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响——以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学, 2018, 29(1): 140-150.
[13] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[14] 魏新善,陈娟萍,张道锋,闫小雄,任军锋,严婷. 鄂尔多斯盆地东部大面积致密碳酸盐岩气地质特征及成藏条件分析[J]. 天然气地球科学, 2017, 28(5): 677-686.
[15] 杨旭,孟英峰,李皋,曾辉. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[2] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[3] 达江;宋岩;洪峰;赵孟军;傅国友;方世虎;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 452 -455 .
[4] 许辉群;桂志先;. 利用测井约束地震反演预测砂体展布――以YX地区砂四段三砂组砂体为例[J]. 天然气地球科学, 2006, 17(4): 547 -551 .
[5] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[6] 吴向华,程同锦,邓天龙 . 油气化探分析检测技术现状及发展趋势[J]. 天然气地球科学, 2005, 16(1): 78 -81 .
[7] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[8] 刘玉梅;邓泽进;孙广伯;曹宏涛;. 板桥断裂构造带油气成藏组合特征[J]. 天然气地球科学, 2003, 14(4): 275 -278 .
[9] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[10] 成永生 陈松岭. 南堡凹陷外围地区古生界地层油气成藏分析[J]. 天然气地球科学, 2009, 20(1): 108 -112 .