天然气地球科学

• 天然气开发 • 上一篇    下一篇

云南恩洪向斜西南区垂向流体能量特征及有序开发建议

吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉   

  1. 1.中国矿业大学资源与地球科学学院,江苏 徐州 221116;
    2.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008;
    3.中联煤层气有限责任公司,北京 100016
  • 收稿日期:2018-01-30 修回日期:2018-04-20 出版日期:2018-08-10 发布日期:2018-08-10
  • 作者简介:吴丛丛(1993-),女,河南濮阳人,硕士研究生,主要从事煤层气地质及开发地质研究.E-mail:congwu0510@163.com.
  • 基金资助:
    国家科技重大专项(编号:2016ZX05044-002;2016ZX05067001);国家自然科学基金项目(编号:41772155)联合资助.
     

Vertical fluid energy characteristics and orderly development suggestionin the southwestern region of Enhong Syncline in Yunnan

Wu Cong-cong,Yang Zhao-biao,Sun Han-sen,Zhang Zheng-guang,Li Geng,Peng Hui   

  1. 1.School of Resource and Geosciences,China University of Mining and Technology,Xuzhou 221116,China;
    2.Key Laboratory of CBM Resources and Dynamic Accumulation Process,Ministry of Education of China,China University of Mining and Technology,Xuzhou 221008,China;
    3.China United Coalbed Methane Corporation,Ltd.,Beijing100016,China
  • Received:2018-01-30 Revised:2018-04-20 Online:2018-08-10 Published:2018-08-10

摘要:

储层流体能量是进行煤层气开发的主要动力,是煤层气获得高产的关键因素,查明煤系地层流体能量特征对煤层气有利区段优选具有重要意义。以恩洪西南区块为研究对象,基于抽水试验数据和煤田勘探资料,从视储层压力、水动力场和水化学场3个方面分析了研究区垂向流体能量层域特征,发现不同层段差异明显,含煤地层普遍属于欠压状态,中段压力系数平均为0.86,流体能量相对最高;上段水动力条件明显强于中、下段,与周围含水层水力联系较强,有利于实现排水降压;上段地下水封闭指数平均为11.96,水质类型主要为HCO-3—Ca2+型,封闭性较弱,水化学环境较开放;各层段含气量均较高且差异较小,不构成约束开发的限制条件。提取压力系数、单位涌水量、渗透系数、影响半径和地下水封闭指数5个水文地质评价指标,运用灰色关联分析法对不同含煤层段的开发潜力进行了初步评价,认为上段为较有利开发层段,推荐为优选层段,各含煤层段递进开发顺序为上段→中段→下段。
 

关键词: 恩洪西南区, 煤层气, 流体能量特征, 灰色关联分析, 有序开发

Abstract:

Reservoir fluid energy is the main driving force for coalbed methane development,and it is the key factor to obtain high production.It is of great significance to identify the fluid energy characteristics of coal measures to optimize the favorable sections of coalbed methane.In this paper,take the southwestern of Enhong block as the research object,based on pumping test data and coalfield exploration data,the layer characteristics of vertical fluid energy in the study area were analyzed from three aspects of apparent reservoir pressure,hydrodynamic field and water chemical field.It is found that there are obvious differences in different layers.The coal-bearing strata generally belong to under-pressure state.The average pressure coefficient of middle section is 0.86,and the fluid energy is the highest.The hydrodynamic condition of upper section is obviously stronger than the middle and lower sections,and has strong hydraulic connection with the surrounding aquifers,which was conducive to the drainage and depressurization.The groundwater closeness index of the upper section is 11.96 on average,the type of water quality is mainly HCO-3-Ca2+ type,indicating weak closeness and relatively open water chemical environment.The gas content of each section is high and the difference was small,which does not constitute the restriction condition of constraint development.The 5 hydrogeological evaluation indexes,including apparent reservoir pressure coefficient,unit water inflow,permeability coefficient,influence radius and groundwater closeness index,are extracted,and the development potential of different coal bearing sections is preliminarily evaluated by using grey relational analysis method.It is considered that the upper section is the favorable development layer,and is recommended as the preferred layer.The progressive development order of each coal bearing section is:Upper section → middle section → lower section.
 

Key words:

中图分类号: 

  • P618.13


[1]Fu Xuehai,Qin Yong,Wei Chongtao.Coalbed Methane Geology:Volume 3[M].Xuzhou:China University of Mining and Technology press,2007:34-73.
傅雪海,秦勇,韦重韬.煤层气地质学:卷三[M].徐州:中国矿业大学出版社,2007:34-73.
[2]Peng Xinshan,Liu Mingju,Chen Yang,et al.Controlling role of hydrous and hydrodynamic conditions on gas fugitive and deposition[J].Journal of China Coal Society,2014,39(S1):93-99.
彭信山,刘明举,陈阳,等.含水性及水动力条件对煤层瓦斯逸散与赋存的控制作用[J].煤炭学报,2014,39(S1):93-99.
[3]Jia Pengzhou.Study on quantitative evaluation method of water abundance for aquifer in coal deposits[J].Coal Science and Technology,2017,45(2):168-172.
贾鹏宙.煤矿床含水层富水性定量评价方法研究[J].煤炭科学技术,2017,45(2):168-172.
[4]Zhang J Y,Liu D M,Cai Y D,et al.Geological and hydrological controls on the accumulation of coalbed methane within the No.3 coal seam of the southern Qinshui Basin[J].International Journal of Coal Geology,2017,182:94-111.
[5]Guo Chen,Lu Lingling.Study on relationship of liquid energy distribution and coalbed methane development in coal bearing strata[J].Coal Science and Technology,2016,44(2):45-49.
郭晨,卢玲玲.含煤地层流体能量分布与煤层气开发关系研究[J].煤炭科学技术,2016,44(2):45-49.
[6]Guo Chen,Qin Yong,Yi Tongsheng,et al.Groundwater dynamic conditions and orderly coalbed methane development of Feitianblock in western Guizhou,south China[J].Journal of China Coal Society,2014,39(1):115-123.
郭晨,秦勇,易同生,等.黔西肥田区块地下水动力条件与煤层气有序开发[J].煤炭学报,2014,39(1):115-123.
[7]Zheng Guiqiang,Zhu Xuezheng,Niu Centao,et al.The influence of hydrodynamic conditions on the occurrence of coalbed methane,taking Ordos Basin as an example [J].Journal of North China Institute of Science and Technology,2015,12 (1):1-5.[JP]
郑贵强,朱雪征,牛岑涛,等.水动力条件对煤层气赋存的影响研究——以鄂尔多斯盆地为例[J].华北科技学院学报,2015,12(1):1-5.
[8]Huang H Z,Sang S X,Miao Y,et al.Trends of ionic concentration variations in water coproduced with coalbed methane in the Tiefa Basin[J].International Journal of Coal Geology,2017,182:32-41.
[9]Zhang S H,Tang S H,Li Z C,et al.Study of hydrochemical characteristics of CBM co-produced water of the Shizhuangnan block in the southern Qinshui Basin,China,on its implication of CBM development[J].International Journal of Coal Geology,2016,159:169-182.
[10]Katharine G D,Katie L G,Junko M M,et al.Trends in water quality variability for coalbed methane produced water[J].Journal of Cleaner Production,2014,84:840-848.
[11]Yi Tongsheng.Factors controlling the accumulation of coalbed methane in the Enhong coal mining district[J].Acta Mineralogica Sinica,2007,27(Z1):493-498.
易同生.恩洪矿区煤层气富集的控制因素[J].矿物学报,2007,27(Z1):493-498.
[12]Wu Jianguo,Tang Dazhen,Li Song,et al.Characteristics of the pore-microfracture system of coal reservoirs in Enhong area,Yunnan Province[J].Coal Geology and Exploration,2012,40(4):29-33.
吴建国,汤达祯,李松,等.云南恩洪地区煤储层孔裂隙特征及孔渗性分析[J].煤田地质与勘探,2012,40(4):29-33.
[13]Guo Chen,Qin Yong,Lu Lingling.Hydrogeological conditions of orderly coalbed methane development in Hongmei well field,western Guizhou,south China[J].Advances in Earth Science,2015,30(4):456-464.
郭晨,秦勇,卢玲玲.黔西红梅井田煤层气有序开发的水文地质条件[J].地球科学进展,2015,30(4):456-464.
[14]Huo Kaizhong,Zhao Yongjun,Sun Lidong.Gray cluster analysis method applied to evaluation on coalbed methane block selection[J].Fault Block Oil and Gas Field,2007,14(2):14-17,90.霍凯中,赵永军,孙立冬.灰色聚类分析在煤层气选区评价中的应用[J].断块油气田,2007,14(2):14-17,90.
[15]Zhang Chunpeng,Wu Caifang,Li Teng,et al.Principal component analysis method applied to evaluation on coalbed methane block selection[J].Coal Science and Technology,2016,44(8):137-142.
张春朋,吴财芳,李腾,等.主成分分析法在煤层气选区评价中的应用[J].煤炭科学技术,2016,44(8):137-142.
[16]Yang Song,Qin Yong,Shen Jian,et al.Characteristics and geological controls of coal reservoirs in Enhong syncline[J].China Coalbed Methane,2010,7(5):18-20.
杨松,秦勇,申建,等.恩洪向斜煤储层特性及其地质影响因素[J].中国煤层气,2010,7(5):18-20.
[17]Zhao Youzhou,Gui Baolin,Luo Qiliang,et al.A summary of the exploration project of seam gas in south part of Enhong Coalfield in Yunnan Province[J].Yunnan Geology,2004,23(4):443-456.
赵有洲,桂宝林,罗启亮,等.恩洪煤田南部煤层气勘探项目总结[J].云南地质,2004,23(4):443-456.
[18]Wu Congcong,Lin Xiaoying,Yang Zhaobiao,et al.Features and causes of coal measures fluid pressure in Tucheng syncline Songhe block of western Guizhou[J].Coal Science and Technology,2016,44(10):88-94.
吴丛丛,林晓英,杨兆彪,等.黔西土城向斜松河区块煤系流体压力特征及成因[J].煤炭科学技术,2016,44(10):88-94.
[19]Du Yanfei,Wu Caifang,Zou Mingjun,et al.Study on coalbed methane layer pressure propagation process of coal reservoir[J].Coal Engineering,2011(7):87-89.
杜严飞,吴财芳,邹明俊,等.煤层气排采过程中煤储层压力传播规律研究[J].煤炭工程,2011 (7):87-89.
[20]Liu Chenglin,Che Changbo,Fan Mingzhu,et al.Coalbed methane resource assessment in China[J].China Coalbed Methane,2009,6(3):3-6.
刘成林,车长波,樊明珠,等.中国煤层气地质与资源评价[J].中国煤层气,2009,6(3):3-6.
[21]Tian Wenguang,Shao Longyi,Sun Bin,et al.Chemical behaviors of produced water from CBM wells in the Baode area Shanxi,China,and their control on gas accumulation[J].Natural Gas Industry,2014,34(8):15-19.
田文广,邵龙义,孙斌,等.保德地区煤层气井产出水化学特征及其控气作用[J].天然气工业,2014,34(8):15-19.
[22]Yang Zhaobiao,Wu Congcong,Zhang Zhenguang,et al.Geochemical significance of CBM produced water:A case study of developed test wells in Songheblock of Guizhou Province[J].Journal of China University of Mining and Technology,2017,46(4):1-8.
杨兆彪,吴丛丛,张争光,等.煤层气产出水的地球化学意义——以贵州松河区块开发试验井为例[J].中国矿业大学学报,2017,46(4):1-8.
[23]Wu Congcong,Yang Zhaobiao,QinYong,et al.Geochemical comparison and its geological significance of CBM produced water in the Songhe and Zhijin blocks[J].Journal of China Coal Society,2018,43(4):1058-1064.
吴丛丛,杨兆彪,秦勇,等.贵州松河及织金煤层气产出水的地球化学对比及其地质意义[J].煤炭学报,2018,43(4):1058-1064.
[24]Yang Xinchao,Sang Shuxun,Fang Liangcai,et al.Application of grey relation alanalysis to evaluation of coalbed methane reservoirs[J].Journal of Xian University of Science and Technology,2010,30(2):202-206,221.
杨欣超,桑树勋,方良才,等.灰色关联分析在煤层气储层评价中的应用[J].西安科技大学学报,2010,30(2):202-206,221.

[1] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[2] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[3] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[4] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[5] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[6] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[7] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[8] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[9] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[10] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
[11] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[12] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
[13] 马平华,霍梦颖,何俊,彭英明,邵先杰,接敬涛. 煤层气井压裂影响因素分析与技术优化——以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304.
[14] 孙超群,李术才,李华銮,崔伟,宋曙光. 煤层气藏应力—渗流流固耦合模型及SPH求解[J]. 天然气地球科学, 2017, 28(2): 305-312.
[15] 韩旭,田继军,冯烁,张雨瑶 . 准南煤田玛纳斯矿区向斜—承压式煤层气富集模式[J]. 天然气地球科学, 2017, 28(12): 1891-1897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨磊,韩红霞,施英,周锦明,张珑,祁英会. 塔里木盆地塔中地区衰竭废弃缝洞型碳酸盐岩挥发油藏及凝析气藏注水效果分析[J]. 天然气地球科学, 2015, 26(S2): 202 -206 .
[2] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420 -428 .
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345 -1355 .