Shale,Adsorption,Supercritical,Porous flow,Influence factors,"/> 基于渗流新模型分析页岩气流动影响因素及规律

天然气地球科学

• 天然气开发 • 上一篇    

基于渗流新模型分析页岩气流动影响因素及规律

左罗,蒋廷学,罗莉涛,吴魏,赵昆   

  1. 1.中国石化页岩油气富集机理与有效开发国家重点实验室,北京 100029;
    2.中国石化石油工程技术研究院,北京 100029;
    3.清华大学环境学院,北京100084;4.中国石化重庆涪陵页岩气勘探开发有限公司,重庆 408014
  • 收稿日期:2017-07-21 修回日期:2017-10-19 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:左罗(1988-),男,四川安岳人,博士研究生,主要从事非常规油气开发研究.E-mail:zuoluoxingfeng@163.com.
  • 基金资助:

    国家自然科学基金“页岩油气高效开发基础研究”(编号:51490653);国家重大科技专项“彭水地区常压页岩气勘探开发示范工程”(编号:2015ZX05069);中国石化页岩油气富集机理与有效开发国家重点实验室专项基金联合资助.

Analysis of the influencing factors and rules of shale gas flowbased on a new porous flow equation

Zuo Luo,Jiang Ting-Xue,Luo Li-Tao,Wu Wei,Zhao Kun   

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing 100029,China;
    2.Sinopec Research Institute of Petroleum Engineering,Beijing 100029,China;3.School of Environment,Tsinghua University,Beijing 100084,China;
    4.Chongqing Fuling Shale Gas Exploration and Development Company,Sinopec,Chongqing  408014,China
  • Received:2017-07-21 Revised:2017-10-19 Online:2018-02-10 Published:2018-02-10

摘要:

储层条件下Langmuir吸附模型不足以描述页岩气的超临界高压吸附特征,故含Langmuir吸附模型的渗流方程不利于描述超临界高压吸附解吸作用下页岩气的流动特征,因此建立了考虑超临界高压吸附模型的页岩气渗流方程,并与考虑Langmuir吸附模型的渗流方程进行了对比,同时分析了渗透率、孔隙度及吸附解吸作用对页岩气流动的影响规律及程度。研究表明:与Langmuir吸附模型相比新吸附模型能更加准确地描述页岩的超临界高压等温吸附特征;基于新吸附模型的渗流方程拟合实验结果的精度更高,更利于描述吸附解吸对流动的影响;当平均压力下降小于32.70%时,日产量影响程度排序为渗透率>孔隙度>吸附解吸作用;当平均压力下降为32.70%~42.58%时,日产量影响程度排序为孔隙度>渗透率>吸附解吸作用;当平均压力下降大于42.58%时,日产量影响程度排序为孔隙度>吸附解吸作用>渗透率;孔隙度、渗透率仍为页岩气传质输运的主控因素,但不可忽略吸附解吸作用对页岩气井生产中后期的影响。

关键词: 页岩, 吸附, 超临界, 渗流, 影响因素

Abstract:

Langmuir model cannot describe the supercritical high-pressure adsorption under the reservoir condition,so the flow equation with Langmuir model cannot describe the flow characteristics of shale gas effectively.Therefore,we establish a new porous flow equation which contains a high-pressure adsorption model,outcomes of the new equation are compared to the flow equation with Langmuir model,then we analyze the influence of permeability,porosity and adsorption function on shale gas flow and the influence rule of these factors.Results show that the new supercritical adsorption model can represent the supercritical adsorption isotherm on shale precisely;the new porous flow equation based on the new adsorption model can fit the experiment data with a higher precision and express the adsorption/desorption effect more clearly;when average pressure declining is less than 32.70%,influence extent for gas production per day is permeability>porosity>adsorption and desorption;when average pressure declining is between 32.70% and 42.58%,the influence extent is porosity>permeability>adsorption and desorption;when average pressure declining is more than 42.58%,the influence extent is porosity>adsorption and desorption>permeability.Although permeability and porosity are still the main factors,we should not neglect the function of adsorption and desorption.
 

Key words: Shale')">

中图分类号: 

  • TE312

[1]Li Shuguang,Cheng Bingjie,Xu Tianji.Geophysical characteristics of shale gas reservoir and its identification method[J].Xinjiang Petroleum Geology,2011,32(4):351-352.
李曙光,程冰洁,徐天吉.页岩气储集层的地球物理特征及识别方法[J].新疆石油地质,2011,32(4):351-352.
[2]Li Yuxi,Qiao Dewu,Jiang Wenli,et al.Gas content of gas-bearing shale and its geological evaluation summary[J].Geological Bulletin of China,2011,30(2):308-317.
李玉喜,乔德武,姜文利,等.页岩气含气量和页岩气地质评价综述[J].地质通报,2011,30(2):308-317.
[3]Zhou Li,Li Ming,Zhou Yaping.Experiment of adsorption of supercritical methane on activated carbon and theoretical analysis[J].Science in China:Series B,2000,30(1):49-56.
周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学:B辑,2000,30(1):49-56.
[4]Xing Huabin,Su Baogen,Yang Yiwen,et al.Progress in supercritical fluid adsorption[J].Chemical Industry and Engineering Progress,2002,21(12):885-889.
邢华斌,苏宝根,杨亦文,等.超临界流体吸附研究进展[J].化工进展,2002,21(12):885-889.
[5]Zhou Yaping,Yang Bin.Progress in supercritical gas adsorption[J].Chemistry Bulletin,2000,63(9):8-12.
周亚平,杨斌.气体超临界吸附研究进展[J].化学通报,2000,63(9):8-12.
[6]Zhou Li,Lv Changzhong,Wang Yilin,et al.Physisorption of gases on porous solids at above-critical temperatures[J].Progress in Chemistry,1999,11(3):221-226.
周理,吕昌忠,王怡林,等.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展,1999,11(3):221-226.
[7]Chareonsuppanimit P,Mohammad S A,Robinson Jr R L,et al.High-pressure adsorption of gases on shales:Measurements and modeling[J].International Journal of Coal Geology,2012,95(1):34-46.
[8]Yan Jimin,Zhang Qiyuan.Adsorption and Condensation-the Surface and Pore of Solid[M].Beijing:Science Press,1979:68-91.
严继民,张启元.吸附与凝聚—固体的表面与孔[M].北京:科学出版社,1979:68-91.
[9]Hocker T H,Aranovich G L,Donohue M D.Monolayer adsorption for the subcritical lattice gas and partially miscible binary mixtures[J].Journal of Colloid and Interface Science,1999,211(1):61-80.
[10]Hirschfelder J B,Curtiss F C,Brind R B.Molecular Theory of Gases and Liquid[M].New York:John Wiley,1954:20-100.
[11]Guggenheim E A.Mixtures the Theory of the Equilibrium Properties of Some Simple Classes of Mixtures Solutions and Alloy[M].Oxford:Clarendon Press,1952:50-75.
[12]Anderson D M,Nobakht M,Moghadam S,et al.Analysis of Production Data from Fractured Shale Gas Wells[C]//Society of Petroleum Engineers,Unconventional Gas Conference.Pittsburgh:Society of Petroleum Engineers Press,2010:1-15.
[13]Bello R O,Wattenbarger R A.Modelling and analysis of shale gas production with a skin effect[J].Journal of Canadian Petroleum Technology,2010,49(12):37-48.
[14]Wang Nan,Zhong Taixian,Liu Xingyuan,et al.Production characteristics and law of shale gas reservoir under complex conditions[J].Fault-Block Oil & Gas Field,2013,19(6):767-770.
王南,钟太贤,刘兴元,等.复杂条件下页岩气藏生产特征及规律[J].断块油气田,2013,19(6):767-770.
[15]Mi Lidong,Jiang Hanqiao.Li Tao,et al.Characterization and dynamic analysis of shale gas production based on discrete fracture model[J].Journal of China University of Petroleum:Edition of Natural Science,2015,39(3):126-131.
糜利栋,姜汉桥,李涛,等.基于离散裂缝模型的页岩气动态特征分析[J].中国石油大学学报:自然科学版,2015,39(3):126-131.
[16]Wang F P,Hammes U,Li Q.Overview of Haynesville Shale properties and production[J].American Association of Petroleum Geologists,2013,105(1):155-177.
[17]Wang F P,Hammes U,Reed R,et al.Petrophysical and mechanical properties of organic-rich shales and their influences on fluid flow[J].American Association of Petroleum Geologists,2013,103(1):167-186.

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[5] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[6] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[7] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[8] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[9] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[10] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[11] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[12] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[13] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[14] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[15] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!